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PREFACE,

IN the preparation of the following work no pains have been spared
to obtain from the best sources, such as the later treatises in highest

repute, memoirs of scientific bodies, and mathematical journals in

English, French, and German, the materials for a book suited to the

present state of mathematical science and the wants of teachers and

students.

The work contains much that has never before appeared in an Eng
lish dress, and almost every part will be found to present some new
feature. Xo attempt, however, has been made at originality, unless

for the benefit of the student, and in the belief that the existing exposi-

tions or processes were inferior. The object has simply been, by any

and all means, to make the best book, without aiming so much at indi-

vidual reputation as at the author's own convenience and that of others,

devoted, like himself, to the noble task of guiding the youthful votaries

of science.

The French treatises furnish excellent models of the theory of Al-

gebra, the German of ingenuity and brevity of notation and exposi-

tion, the English of practical adaptation and variety of illustration and

example ;
and from these, after a careful comparison of many authors

in each language, demonstrations have been selected and introduced

verbatim when they seemed incapable of improvement ;
but when-

ever the slightest alteration or amalgamation, or the entire remodeling
of them, could give additional clearness or elegance, the limae labor

has not been spared.

The work will be found to contain all that is important in the higher

parts of Algebra, upon which usually separate treatises are thought

necessary, as well as the elementary expositions suited to beginners.

Every variety of symbol and of example has been introduced.

On page XI. those articles of this volume are indicated which con-

stitute a minimum course of Algebra requisite for the prosecution of

the higher branches of mathematics. A more extended course, such

as would ordinarily be advisable, is also pointed out. The rest may
very well be reserved for reference, as the student's own discovery of
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his wants, in the advanced stages of mathematical pursuit, shall call it

in requisition.

The author desires to acknowledge the effective assistance which he

has received, in revising the work and superintending it through the

press, from Mr. J. J. Elmendorf, to whom it is indebted for many val-

uable suggestions.
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A MINIMUM COURSE OF ALGEBRA.

ARTICLES* 1-4 inclusive, 6-7, 9-page 17, Art. 15-p. 26, Art. 32-46, 48-

p. 60, Art, 63-p. 62, Art. 78-p. 77, Art. 83-90, 105-110, 119-128, 130-133

XVI., 134-143, p. 138, 139, Art. 145-p. 150, Arts. 150, 151, 178-186.

A MORE ENLARGED COURSE.

Articles 1-93 inclusive, 101-197, 199-233, 244-258, 298-309, 315-321.

It may be useful to point out in this connection a course of mathematica

study. 1. Algebra; 2. Geometry:! these two may be pursued simultane-

ously ; 3. Plane Trigonometry, with its applications to Surveying and Navi-

gation ; Spherical Trigonometry, with its applications to Practical and Nautical

Astronomy and Geodesy ;t 4. Descriptive Geometry ;$ 5. Analytical Ge-

ometry ;IJ 6. Theoretic Astronomy;^" 7. Differential and Integral Calculus

and Calculus of Variations ;** 8. Mechanics ;ff 9r Optics ;tJ 10. Phys-
ical Astronomy .

* The articles are numbered throughout the book at the beginnings of paragraphs.

t A treatise on Geometry, compiled from the latest and best foreign sources, has been

published by the author.

t The author has already published a work embracing- these subjects, a new and greatly

improved edition of which will appear in August.
This branch, though it may be omitted without destroying the connectionbetween those

which precede and follow it, is of the highest advantage to the general student, and invalua-

ble to the engineer. It may be best taken up in the excellent treatise by Professor Davies.

In the French, Monge, the founder,of the science, has written extensively upon the sub-

ject ; there is also a treatise by that best of French writers of elementary works, Lefebure

de Fourcy. Professor Davies has published a fine volume on the application of descriptive

geometry to shadows and perspective.

II On this subject there are numerous writers, Davies, Pierce, and Young, whose work is

republished here, the author of a treatise in the Library of Useful Knowledge ; and in the

French, among the best, Biot, of whom there is an English translation by Professor Smith,

of Virginia, and Lefebnre de Fourcy, whose work is most generally preferred. A work on
this subject, by the author, may be expected to appear in the coarse of the next twelve

months.

T The authors recommended are Norton, Gummery ; and in the French, Biot, of whom
there is a translation in part, known as the Cambridge Astronomy.

** This is one of the portions of mathematical science on which the author proposes to

put forth a treatise at no distant day. We have at present on the calculus, Church and

Davies, in America; Young, O'Brien, and Walton, in England; Lacrois, Duhamel, and

Moigno, who may be mentioned among the numerous writers in France.

tt Courtenay's Boucharlat ;
in French, Francosur and Poisson.

JJ Bache, Brewster, Bartlett, Biot, and Jackson. This branch may be pursued to some
extent immediately after Geometry.

$$ The authors are Lagrange and Laplace, of whose Mecanique Celeste we have the

translation and notes of Bowditeh, but for readers of the French, the Systeme dn Monde
of Pontecouland is to be preferred.



As Greek letters are frequently used in the following treatise, for



INTRODUCTION,

IN* every question of numbers there are certain conditions which the

required numbers in connection with the given ones must fulfill, which

conditions are indicated by the question itself.

The solution has for its object to determine such required quantities

as will verify these conditions. It is necessary, therefore, to endeavor

first to seize the different relations by which all the quantities, known

and unknown, are connected together, and to find afterward, by means

of these relations, what operations ought to be performed upon the

given quantities to obtain those which are required. Such is the ob-

ject proposed in that part of mathematics known by the name of Al-

gebra.
To show how the use of letters and signs arises, let the following

simple problem be proposed.
To divide 890 dollars between three persons in such a manner that the

second shall have 115 more than the first, and the third ISO more than

the second.

Now let us see by what deductions the values of the unknown num-

bers may be -derived.

Since the share of the second is 115 more than that of the first, and

the share of the third 180 more than that of the second, it will be 180

added to 115, or 295 more than that of the first.

Then the sum of the three parts will be formed of 3 rimes the first

part, increased by 115, and also by 295, or, what is the same thing, of

3 times the first part increased by 410.

But this is equal to the sum to be divided, viz., 890.

Then 3 times the first part, .increased by 410, is equal to 890.

Then 3 times the first part is equal to 890 diminished by 410, or 480

Then the first part will equal the third of 480, or 160 dollars.

The first person, therefore, has 160 dollars
;
the second, who must

have 115 more, will have 275; and the third, who was to' have 180

more than the second, 455 dollars. These three sums united make
890 dollars, which confirms the correctness of the result.

This example exhibits the kind of reasonings necessary to be em-

ployed in the solution of problems in numbers ; and it will be per-
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ceived that, to express these reasonings, it is necessary to repeat fie

quently a number of words, designating the quantities, both known and

unknown, as ihejlrst part, the number to be divided, &c., and other words

expressing the relations of these, as increased by, diminished by, &c.

To obviate the inconvenience of the periphrases, by means of which
the quantities which enter into the question are distinguished, it is cus-

tomary to represent these quantities by letters. Ordinarily, the given

quantities are represented by the first letters of the alphabet, a, b, c . . .
,

and the required or unknown by the last, x, y, z . . .

The relations are expressed by signs. Thus, increased by is written

-f- ;
diminished by is written

; multiplied by is written X
; or, a mul-

tiplied by b, simply thus, ab ; a divided by b, thus, -/ a equal to b,

thus, a=b.

The reasoning of the above example may, with the aid of such

abridgments, if x denote the first share, be written briefly thus :

a+115+ 180

3a;= 890 410

3a;=:480

.="=,_
If the numbers had been diffei'ent in the above problem, the methoa

of proceeding would have been precisely the same.

Thus, if 1250 had been the sum to be divided, 170 the excess of the

second part over the first, and 220 the excess of the third over the sec-

ond, the reasoning would have had the same form, as seen below.

x share of the 1st, 230

aH-170 170

Z+ 170 +220 share of the 2d, 400

3z=r 1250 560 share of the 3d, 620

3z=690
. Proof.

_690_ 230
Z

3
=

400

620

1250

All these individual cases of the same kind may be generalized, thus :

Let a represent the number to be divided
;
b the excess of the second

over the first share
;
c that of the third, over the second. The reason-

ing will then stand as follows :
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X

x+b
x+b+c
3x+2b+c=a
3x=a 2b c

a 2b c*=

The last expression, x= , shows what operations ought to be
5

performed upon the given numbers to produce the required, and may
be interpreted into the following rule.

Subtract double the excess of the second share over the first, together

uith the excess of the third over the second,from the number to be divided,

and divide the remainder by 3. The result will be the first share re-

quired.

Applying this rule to the first case above, we have

115x2=230890 and to the 2d, 170

180 2

~410 340

3)480 220 1250

~160 Ans. 560

3)690

230 Ans.

The expression x= , from which the rule to be applied is

derived, is called a general formula, or simply a formula from which,
instead of from the rule, the answers in the particular cases may be

obtained by substitution ; thus,

in the 1st case, in the 2d case,

890230180 480 12502x170220 690

-3- Z
-3-=

16 '
X=~

~3 =-3-=230.

The nature and utility of algebra being thus briefly indicated, we

proceed to give in detail, first, the methods of representing quantities,
and all possible relations and combinations of them, and afterward the

use of these methods in the solution of questions.





ALGEBRA,

DEFINITIONS AND NOTATION.

1. ALGEBRA is a species of short-hand writing which, by the aid of certain

symbols, serves to abridge and generalize propositions relating to numbers.*

A Proposition is any thing propounded as true. If it express the proper-

ties or relations of quantity, it is a mathematical proposition. If it be self-

evident, it is called an axiom. If it require demonstration, it is called a theorem ;

and if it propose something to be done, or that some required or unknown

quantity be found, it is called a problem.

Symbols may be divided into symbols of quantity, and symbols of relation

commonly called signs.

2. The principal symbols employed in algebra are the following :

I. The letters of the alphabet, a, b, c, &c., which are employed to denote

the numbers which are the object of our reasonings.

When the Roman letters are exhausted, or when a marked distinction is de-

sirable between the different classes of quantities employed, the Greek letters

are also used as representatives of quantity. If different quantities of the same

general nature are used together, it is a common custom to represent them by
the same letter, distinguishing them from one another by accents, or small

numbers written below ; thus, a, a", a", a"', a^, are representatives of differ-

ent quantities, and are read a, a prime, a second, &c. ; and a\, a^, 03, &c.,

may be read a one subscript, a two subscript, and so on.

A similar effect is produced by using large and small letters ; thus, the di-

ameter of a .small circle being represented by </, that of a larger may be by D.

It is customary, in some cases, to represent quantities by symbols, which

indicate distinctly the nature of the quantities represented. Thus, the six

trigonometrical quantities, which are known by the names of sine, tangent,

secant, cosine, cotangent, cosecant, are represented by the symbols sin, tan,

sec, cos, cot, cosec ; and the astronomical quantities, the longitude of the

sun, the longitude of the moon, and the longitude of a node, are represented

by the symbols 0, }) , and t5.

* In the operations of Arithmetic, with the exception of those which relate to compound
numbers, quantities are considered as composed of units, hut the kind of unit is not noticed,

only the number. In Algebra, neither the kind nor number of units of which a quantity
is composed is regarded, and often the quantity is not considered as composed of units at

alL The idea of number may, however, always be introduced, and it is best to keep it in

mind in the beginning of Algebra. As in Arithmetic the rules of addition, multiplication,

proportion, &c., are the same, whatever be the kind of units which the numbers employed
represent, so in Algebra these rules are the same, whatever be either the kind or num-
ber of units in the quantities employed (upon which the operations are performed). In

every part of Algebra, processes analogous to those prescribed by the rules of Arithmetic

are in use. Hence, and because of its character of generalization, it was called by New
ton General Arithmetic. Algebra, however,, presents many relations of quantity of which
Arithmetic takes no cognizance.

A
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These are the symbols of quantity.
The following are symbols of relations :

II. The sign -]~> which is named plus, and is employed to denote the addi-

tion of two or more numbers.

Thus, 12+30 signifies 12 plus 30, or, 12 augmented by 30. In like manner,
a -\- b signifies a plus b, or, the number designated by a augmented by the

.number designated by b.

III. The sign , which is named minus, and is employed to denote the

subtraction of one number from another.

Thus, 5423 signifies 54 minus 23, or, 54 diminished by 23. In like man-

ner, a b signifies a minus b, or, the number designated by a diminished by
the number designated by b.

The sign -v is sometimes employed to denote the difference of two num-

bers, when it is not known which is the greater. Thus, a~& signifies the

difference of a and b, when it is not known whether the number designated by
a be less or greater than the number designated by b.

TV. The sign X which may be read injo, is employed to denote the multi-

plication of two or more numbers.

Thus, 72 X 26 is read 72 into 26, or, 72 multiplied by 26. In like manner,
a X b signifies a into b, or, a multiplied by b ; and axbxc signifies the con

tinued product of the numbers designated by a, b, c ; and so on for any num-
ber of factors.

The process of multiplication is also frequently indicated by placing a point

between the successive factors ; thus, a . b . c . d signifies the same thing as

In general, however, when numbers are represented by letters, their multi-

plication is indicated by writing the letters in succession, without the interpo-

sition of any sign. Thus, ab signifies the same thing as a . b, or a X b ; and

abed is equivalent to a . b . c . d, or a X b X c X d.

Factors expressed by letters are called literal factors, and those expressed

by numbers numerical factors.

It must be remarked, that the notation a . b, or ab, can be employed only
when the numbers are designated by letters ; if, for example, we wished to rep-
resent the product of the numbers 5 and 6 in this manner, 5 . 6 would be con

:founded with an integer followed by a decimal fraction, and 56 would signify

the numberfifty-six, according to the common system of notation.

For the sake of brevity, however, the multiplication of numbers is some
times expressed by placing a point between them in cases where no ambiguity
can arise from the use of this symbol. Thus, 1.2.3.4, may represent the

276
continued product of the numbers 1, 2, 3, 4

; and -
.
-

. may represento y 11

27 6
the product of -, -, and .

V. The sign 4-, which is named by, and when placed between two num-

bers is employed to denote that the former is to be divided by the latter.

Thus, 24 4- 6 signifies 24 by 6, or, 24 divided by 6. In like manner, a-~b

signifies a by b, or, a divided by b.

Two dots without the horizontal line between are also the sign of division.

This form of the sign is used in proportions, where either of the two quantities
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between which it is placed may be regarded as the dividend, and the other tne

divisor. It is analogous, in this respect, to the sign ~ in subtraction.

In general, however, the division of two numbers is indicated by writing the

dividend above the divisor, and drawing a line between them. Thus, 24-^-6

24 ,
a

and a-^-o are usually written and r
6 o

Every fraction, then, expresses the quotient of its numerator, divided by its

denominator. Thus, of a unit may be regarded as composed of two parts :

the one, the third of one unit, and the other, the third of another unit : or

both together, the third of 2 units, or the quotient of 2 divided by 3. This

reasoning may be generalized.
VI. The sign =, called the sign of equality, and read is equal to, when

placed between two numbers denotes that they are equal to each other.

Thus, 56-j-6=62 signifies that the sum of 56 and 6 is equal to 62. In like

manner, a=b signifies that a is equal to b, and a-\-b=c d signifies that a

plus b is equal to c minus d, or that the sum of the numbers designated by a

and b is equal to the difference of the numbers designated by c and d.

VII. The sign <[, which is read is unequal to, and when placed between

two numbers denotes that one of them is greater than the other, the opening

of the sign being turned toward the greater number.

Thus, a>6 signifies that a is greater than b, and a<& signifies that a is

less than b.

VIII. The coefficient is a sign which is employed to denote that a number

designated by a letter, or some combination of letters, is added to itself a cer-

tain number of times.

Thus, instead of writing a-J-a-J-a-f-a-f-c, which represents 5 a's added

together, we write ba. In like manner, IQab will signify the same thing as

ab-\-ab-\-ab+ab-\-ab-{-ab-{-ab -\-ab-\-ab-\-ab, or ten times the product of

a and b.

The numbers 5 and 10 here are coefficients.

The coefficient, then, is a number, written to the left of another number

represented by one or more letters, and denotes the number of times that the

given letter, or combination of letters, is to be repeated.

Or the coefficient is the numerical factor written before one or more literal

factors.

When no coefficient is expressed, the coefficient 1 is always understood ;

thus, la and a signify the same thing.

In a more enlarged sense, one literal factor may be regarded as the coeffi-

cient of another, especially when the former is one of the first, and the lattei

one of the last letters of the alphabet. Thus, in the expression ax, a may be

called the coefficient of x. So, also, in the expression of abxy, ab may be re-

garded as the coefficient of xy.
IX. The exponent, or index, is a sign which is employed to denote that a

number designated by a letter is multiplied by itself a certain number of times.

Thus, instead of writing <zXXaX#Xaor aaaaa, which represents
five a's multiplied together, we write a5

, where 5 is called the exponent or

index of a. Similarly, &X&X&X&X&X?>X&X&X&X&, or b.b .b .

6 . b. b . b . b . b . 6, or bbbbbbbbbb ; or the continued product of 10 6's is written

more briefly b 10
, where 10 is the exponent or index of b.

The exponent or index of a number is, therefore, a number written a little
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above a letter to the right, and denotes the number of times which the number

designated by the letter enters as a factor into a product. When no exponent
is expressed, the exponent 1 is always understood

; thus, a1 and a signify the

same thing.

The products thus formed by the successive multiplication of the samo

number by itself, are in general called the powers of that number. Thus, a is

the first power of a ; a X a=aa=a2
is the second power of a, or the square

of a ; aaa=a? is the third power, or cube of a ; aaaaa=a5 is the fifth power
of a, and aaaa to n factors = a", is the nth power of a, or the power
of a designated by the number n.

X. The square root of any expression is that quantity which, when multi^

plied by itself, will produce the proposed expression, and is generally denoted

by the symbol \/, which is called the radical sign. Thus, the square root

of 9 is -y/9=3, and ^/(=(!, is the square root of a2
; for in the former case

3X3=9, and in the latter aX= 2
-

XI. The cube root of any expression is that quantity which, when multi-

plied twice by itself, will produce the proposed expression. The fourth, or

biquadrate root of any expression is that quantity which, when multiplied

three times by itself, produces the given expression ; and the nth root of any

expression is that quantity which, multiplied (n 1) times by itself, produces
the proposed expression. Thus, the cube root of 8 is 2; for 2x2x2=8,
the fourth root of a4

is a ; for a . a . a . a=a4
, and the nth root of xn

is x ; for

XX x X x . . . . to n factors = x . x . x . x to n factors = zn
.

The roots of expressions are frequently designated by fractional or decimal

exponents, the figure in the numerator of the fractional exponent denoting the

power to which the expression is to be raised or involved, and the figure in

the denominator denoting the root to be extracted or evolved. Thus, the

symbol of operation for the square root of a is either V'a or a- ; for the cube
, , i

root it is ^/a, or a*; for the fourth root, ^/a, or a*; and i/a, or a", denotes

the nth root of a. Also, ^/a
5

,
or a*, denotes the sixth root of the fifth power

of a ; and o, or Vam signifies the nth root of the mth power of a.*

XII. A rational quantity is one which can be expressed without a radical

sign or fractional exponent, as 3wm, or 5xz
y

2
.

XIII. An irrational quantity is a root which can not be exactly extracted,

and is expressed by means of the radical sign -\/> or a fractional exponent, as

V/2 Va2 r x*y*.

XIV. The reciprocal of any quantity is unity divided by that quantity ;

thus, the reciprocals of a2
, r5

, y
5
, z*, are respectively s , -^ -5,. -j

.; but the

following notation is generally used, as being more commodious : 'ttous, the

fractions , -^; -g, ., are expressed by a~3
, x~*, y~*, z~*.*

It will follow from the above, and from the mile for division of fractions, tlinl

the reciprocal of a fraction is the fraction inverted. Thus, the reciprocal of

a 1 b

T is -=-.baa
,

b

* The aubject of fractional and negative exponents will be fully investigated farther in

advance.
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XV. The following characters are used to connect several quantities to-

gether, viz. :

vinculum, or bar

parentheses ( )

braces, or brackets 5 > or I

Thus, m-\-n.x, or (m-\-n)x signifies that the quantity denoted by m-j-n is

to be multiplied by x, and $ -f
? > . $

f- I signifies that *+? is to be multi-

plied by - -. The vinculum or bar is sometimes placed Vertically ; thus,

signifies that the sum of a, b, and c is multiplied by x.

XVI. The signs, .. therefore or consequently, and because, are used to

avoid the frequent repetition of these words.

XVII. Every number written in algebraic language, that is, by aid of

algebraic symbols, is called an algebraic quantity, or, an algebraic expression.

Thus, 3a is the algebraic expression for three times the number a ; 5a* is

the algebraic expression for five times the square of the number a ; 7a5b3 is

the algebraic expression for seven tunes the fifth power of a multiplied by the

cube of b.

3a3 6b3c4 is the algebraic expression for the difference between three

times the square of a and six times the cube of b multiplied by the fourth

power of c.
t

2a 3i2c3-|-4<Z
4
e^/'

6 is the algebraic expression for twice a, diminished

by three times the square of b multiplied by the cube of c and augmented by
four times the fourth power of d multiplied by the product of the fifth power
of e and the sixth power ofy.

XVIII. An algebraic quantity, which is not combined with any other by
the sign of addition or subtraction, is called a monomial, or monome, or, a quantity

of one term, or simply, a term. Thus, 3a3
, 46

s
, 6c, are monomials. The de-

gree of a term is the number of its literal factors, and is found by adding to-

gether the exponents of all the letters contained in the term. Thus, 5a36*c

is of the sixth degree.

An algebraic expression, which is composed of several terms, separated
from each other by the signs + or , is called generally a.polynomial,* or poly-
nome. Thus, 3a?-\-4b

3
6c-{-d is a polynomial. A polynomial is said to

be homogeneous when all its terms are of the same degree.
A polynomial, consisting of two terms only, is usually called a binomial ;

when consisting of three terms, a trinomial. Thus, a-}-b, 3b*c xz, are

binomials, and a-\-lt c, 3m?n5 Gp^r-^-dd, are trinomials.

XIX. Of the different terms which compose a polynomial, some are pre-

ceded by the sign -J-, others by the sign . The former are called additive,

or positive terms, the latter, subtractire, or negative terms.

The first term of a polynomial is not, in general, preceded by any sign ; in

that case the sign -|- is always understood.

* A polynomial is also called a compound quantity. Polynomials, to save the trouble of

writing them repeatedly, are often represented by a single large letter. Thus, if we have

two polynomials, ar* 4j?y-f-try3 y* and rz3 3xy*-\-3x*-y y&, we may represent the first

by A and the second by B, and afterward, in referring to them, may call them the poly
nomials A and B.
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Terms composed of the same letters, affected with the same exponents, are

called similar terms.

Thus, lab and Sab are similar terms, so are 6a2c and 7a2c ; also, I0ab3c*d

and 2absc*d ; for they are composed of the same letters, and these letters

in each are affected with the same exponents. On the other hand, 8a63c

and 3a263c are not similar terms, for, although composed of the same letters,

these letters are not each affected with the same exponent in each term.

XX. The numerical value of an algebraic expression is the number which
results from giving particular values to the letters which compose the ex-

pression, and performing the arithmetical operations indicated by the algebraic

symbols. This numerical value will, of coui-se, depend upon the particular

values assigned to the letters. Thus, the numerical value of 2a3
is 54 when

we make a =3, for the cube of 3 is 27, and twice 27 is 54. The numerical

value of the same expression will be 250 if we make a=5 ; for the cube of 5

is 125, and twice 125 is 250.

The numerical value of a polynomial undergoes no change, however we
may transpose the order of the terms, provided we preserve the proper

sign of each. Thus, the polynomials 4a3 3a26+5ac2
, 4a3

+5ac2 3a2
6,

5ac2 3a26+4a3
, have all the same numerical value. This follows mani-

festly from the nature of arithmetical addition and subtraction, for it is evident

that if the same amounts be added or taken away, it is immaterial in what

order.

Examples ofthe numerical values ofalgebraic expressions :

Let a=4, 6=3, c=2; then will

(1) a+6 c=4+ 3 2=7 2=5

(2) a2+a6+6 2=42+4x3+32=16+12+ 9=37

(3) ac a 6+6 c=4x 2 4X3+3X2=8 12+6=2
a?+b*c3 42+32 22 16+9 421_ _ _
a6 ac+6c

=
4x3 4X2+3X2

=
12 8+6

=
10

(5) v'(a+6)c V( 6)c
3=-v/(4+ 3)X2 V(4 3)X23=
= 3-7416574 2 = 1-7416574

721 263

XXI. Entire quantities are those which are rational and contain no de-

nominator; such are 47, 2et26, 3a2 be.

XXII. An algebraic expression containing a quantity is called &function of

that quantity. For example, the expression 3x2
<*Jx is a function of x ; the

expression a(x-\-y)-\-(x-\-y) is a function of x-\-y. An entire function of

a quantity is one in which this quantity does not enter into a denominator.

A rational function is one in which the quantity does not appear under a

radical.

To express, in a general way, a function of x, we write F(ar). Where

many different functions of x are to be represented, we vary the form of this

initial : thus, F(x), f(x), $(x), F'(x), &c., which denote, in a general way,
different algebraic expressions containing, x.

To express functions of the same form of different quantities, wo use the

same initial before these quantities; thus, F(x), F(y).



REDUCTION OP TERMS-

To express a function like z-+2xy+y- of two quantities, we write F(x,iyl;

of three quantities, F(x, y, z), and so on.

What follows to equations may be called the algebraic calculus.

REDUCTION OF TERMS.

3. REDUCTION of similar terms is the coDecting of several similar terms into

one. 4
The rule may be divided into two cases :

(1) When the similar quantities have the same signs.

(2) When the similar quantities have different signs.

CASE I.

When the similar quantities have the same signs.

Add the coefficients ; affix the letter or letters of the similar terms, and

prefix the common sign -j- or *

Thus, a+2a+3a+4a+5<i=(l+2+3+4-f 5)a=15a,

It is convenient to write the similar terms to be reduced under, instead of

after one another, they being read in the same order in either way.

EXAMPLES.

(5)(1)
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Thus, a 2a+ 3a 4a-f 5a= (l-f3+5)a (2+4)<z=9a 6<z=3a.

And, 3ar+4y 2ar+3?/=(3 2

.Reduce the terms of the polynomials,

(6) c+2c/ 2c 3d+3c+4d 4c

(7) 3a 26+5a 6C+36 9c+a 6+121camArma&ra
(8)

_-_-_ _-__-_-
(9) 3a '6+6a 36+10|a 226 fa

(10) 5ary 4 V^+4ry 10a663+7 Vpqr 9;n/+3a
663.

ADDITION.
ADDITION is the collecting of several polynomials into one.

RULE.

Write the polynomials one after another, and reduce similar terms.*

EXAMPLES.

(1) (2) (3) _
3

xy 20 (a
2 62

) 15-yAc
2

7xy -/a
2 62 7 Vz2

7

12 V 2 &2 ^x*
4 (a2_6

2
)

J 3
(a:

2
i

2 (g*b-)k 5 (3:*

13a2
-f 22&

2

(4) (5) _ (6)

3m2 3

3a 46 5xy+7ab 5V^+y'2 4m2+5 n2 7mn

5a+66 xy3ab 2 (ar
2
+3/

2
)
i+12m2

2j
2+ m

7a 6 8xy9ab 8 (x*-\-yrf 8m3
^re

2 6mn

In example (4), let a=5 and 6=3, then a-\- b= 8

3a 46= 3

5a-f-66= 7

7<z 6= 32

4a+56= 35f

Hence 5a-J- ( 3a)=a+++a+a+ ( )+ (
a

)+ (
a)

Siniilarly, 2a-|-( 5aJ=a+a+( a)+( a)+( )+()+( a)

=+(-)+(-)+(-)
=3( o)= 3o.

* For if certain quantities are to be added and subtracted, it is immaterial in what por-

tions, or what order.

t Similar substitutions maybe tried in some of the following examples. Let the learner

substitute any other numbers for a and b, and he will find that the sum of the polynomials

will be truly expressed by the result 4a-\-5b, the correctness of which does not depend on

the values of a and b. This illustrates the general principle stated in the note of Art. I.
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(7) _(8)

Vax+by
*

3(a 6) SV^+^+y^ 3 (

12a -/a: 3 V^+y + 12(a fe)
12 (ry+rz+yr^-f 5

4iAr.+y (a

4. (z+y)* 3(a

(9) (10)

c-4-c"4- f 4(fl

c -J-d c ~\~f
~~

3(<z

a+l+c-d+e+f -
.(a

fl^U o I {/ _|_
_i- /^ oCfl

<z 6 -^- c-f- -f- ~^/ 10 ((Z

_a+6+c+(/4-c+/ 2

4. Dissimilar quantities can only be collected by writing them in succession,

tnd prefixing to each its respective sign. Thus, 9xy, bed, and 3a6 are dis

wmilar quantities, and their sum is 9xy+3ai 5cd. In like manner, 2a6,

3ai3
, 4C63 are dissimilar quantities, and their sum is 2ab-{- Sab* -\-4ab

3
; which,

however, admits of another form of expression, as will be explained in the rule

of Division. WTien several polynomials, containing both similar and dissimilar

quantities, are to be collected into one polynomial, the process of addition will

be much facilitated by writing all the similar terms under each other in verti-

cal columns.

This, however, is not absolutely- necessary. The similar terms may be col

lected together as they stand.

EXAMPLES.

(1) Add together ax -f 26y+ cz '; -Jx -f -/y+ V*; 3^2^+32*; 4ez

3ax2by; 2ax4<Jy2z*.
ax+2by+cz + -/*+ Vy + V =

3ox 2fey-f 4cz 2x*4-3y* +3r4

2ax 4 V 2z*

5cz -v/x+2 Vz= snm required.

(2) Add together,

4a3b+ Z<?d Snfti ; 4m* + ab*+ bc*d +7as
fe ; 6m*n 5c?d 4-4mn

3 Sal? ;

7mn- + 6c3d brn?n 6a?b ; 1<?d lOai3 8m-n IQd* ; and 12a26

Arranging the similar terms in vertical columns, we have

3c3<2~ 9mn
5c*d+ 4msn+ ab*

8a6-+ 4mns

+ 7mn3

8mn 10a63 Wd*
Gab3 -tnn

mn= sum.

(3) Add llbc-{-4ad
-an ; and 9an 26c 2a^+5c( together.
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(4) Add together, without arranging the similar terms in vertical columns,

2a63+3ac2 8cz2+ 9isx 8hf
5a3 _4a62 76z2 6lr 4/h/

2

5ky %2+JLc + 1463 22ac2

19aca 862
a:+ gx2 + 6%+ 2fo/

2+ 2a62

~5a3
Sea:

2
a:

2 + llx 9hy
2+Ub3

(5) Add together a3 63+ 3a26 5a62
; 3a3 4a26+ 363 3a62

; a3+63

+ 3a2
6; 2a3

4fe
3 5a62

;
6a26+10a&s

; and 6a3

(6) Add Vx2
-j-y

2 Vx^y2
5xy ; 3(x* y + 8xy 2(x

2+ y

3ary 5-y/x
3

(7) Add _ + _ ^ _ to-

y c z s y c s

2
2/
2+ V^+y2

together.

*

gether. ABA B
(8) Add together 4A 6-+ 7^

and 7- 2A+3^.

(9) Add together 3 cos a 4 sin 6+ 6 tan c, 2 cos a+2 sin 6+ 7 tan c,

and cos a+3 sin 6 2 tan c.

(10) Add together 3.290 2.45 3) +1.84 5, 4.560 + 0.59 D +6.41 5,

and 2.220+ 3.11 D 4.21 tS.

ANSWERS.

(3) 166c+5ac+12c(f+4m
(5) a3+a26+a62+63

.

(6) 2 Vx2
t/
2

13a 5m3

A B
(8) 2A+-+l0u .

(9) 6 cos a+sia 6+11 tan c.

(10) 10.070 + 1.25]) +4.04 15.

5. When the coefficients are literal instead ofnumerical, that is, denoted by

letters instead of numbers, their sum may be found by the rules for the addi-

tion of similar and dissimilar terms ; and the sum thus found being 'enclosed in

a parenthesis, and prefixed to the common literal quantity, will express the

Bum required.

EXAMPLES.

(1) (2)

ax+by+cz 3ax+ (a+6) (a;+7/)+ 2mnz2

bx+cy+ az ai+2(a+6) (x+y) 5mwz2

4mnz2
+5(a+6)

(a+b+c)x
= sum. (12a+2^)x+ 8(a+b)+p+ q (x+y)
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(3) (4)

(b c) V* + 3(m n)Vy 3V2 (p 2n)y* ( ci
(c-a)^x _5(ffi n) Vy 6\/2 (y OT) y

3
( c-j-2<)x

3
c^xy

(5) Add ox3
-|-fy+c to dx*+hy+k.

(6) Add together x8+xy+y3
; ox3 oxy-j-ay

3
; ^^ by*+bxy+bx-.

j8-i_a-V+'W
a Xs xw-l-w*

(7) Add i(x+y) and i(x-y). AJso,
3

and ^-.
(8) What is the sum of (a+b)x+(c d)y x-/2; (a 6)x-j-(3c+2<%

+ 5X-/2; 2fex+3Ji/ 2x-v/2; and 36x dy 4xV^ ?

(9) Add ax-j-iy-f-cz ; a'x b'y-^-c'z; and a"x-{-b"y c"z.

(10) Add together ax-j-%+c2; a^-j-iiy Cjz; and a2x 6 2y+ c 2:>

ANSWERS.

(3) (a-f c) -/x 2(m n)Vy-

(5) (
a+rf)^+(6+A)y+c+i-.

(6)

(7) First part, x. Second part,

(8) (2a 6)x+(4c4-3rf)y 2x-/2.

(9) (a-+ a'+ a'

(10) a x+b

+' S

SUBTRACTION.

RULE.

6. PLACE the quantity to be subtracted under that from which it is to be

taken ; change the signs of all the terms in the lower line from -f- to , and

from to +,'or else conceive them to be changed, and then proceed as di-

rected in Addition.*

* The sign , prefixed to a monomial, serves to intimate that this monomial ought to en-

ter subtractively into any combination of which it forms a part. If, fcr example, it be re-

quired to add the subtractive quantity ( <Z) to c, the som c+( d) is e d.

If the difference between two quantities, as m and s, be required, m and $ being both add-

itive, the expression of the difference is m *. If the difference be required between m.
an additive, and ( *), a subtractive quantity, let the difference =d ; that is, let

m
( *)=<i.

Adding ( *) to both these equals, there results

m-(-,)+(-,)=<H-(-s).

But m
( s)-\-( s)=m, and d-\- ( $)=d s.

Therefore, m=d *.

Now TO
( t)=d, and m=d s.

Hence m ( t] is greater than m by the additive quantity , or is equal to w-f-<
The above is the demonstration for isolated terms.

For polynomials we have the following:

It is evident, that if all the terms of the quantity to be subtracted are affected with the
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EXAMPLES.

(1) (2)

From4a+36 2c+8d From ISxy+Sy"
1

Take a+26+ c-fbd Take 5xy+7if
Rem. 3a+ 5 3c+3^ Rem. 17xy 4y

a
-f 2.r

2+ A/2

(3) (4) (5)

* 28ax3 I6a^+25a5x 13a4 2

5a+17& 18aa^+20a
2x2 24a3x 7a4

(6) (7)

Gaby 3yx+4zx ^x* y*-}-4(x -\-y )
3 ^J a-\-x

2aby+6zx+2yx 3(x +?/) 2(:r
2

-y
2
)*-f-3 (+.?)

(8) (9)

.T
2
+2z7/+i/'

.r
8

2x7/4- y
3

(10)
2 4X3 -f 6a

2z2

a2

(11)

7. In order to indicate the subtraction of a polynomial, without actually per-

forming the operation, we have simply to inclose the polynomial, to be sub-

tracted within brackets or parentheses, and prefix the sign . Thus, 2a3

sign -|-, we must take away, in succession, all the parts or terms of the quantity to be sub-

tracted ;
and this is indicated by affecting all its terms with the sign . But if some of

the terms of the subtrahend are affected with the sign , as, for instance, if c d is to be

subtracted from a-\-b ; then, if c be subtracted, we shall have subtracted too much by d ;

hence the remainder a-^-b c is too small by d ; and therefore, to make up the defect, the

quantity d must be added, which gives a-\-b c-\-d ; by inspecting which we perceive that

the signs of the subtrahend have been changed.
This reasoning may be generalized by supposing c to represent the sum of the additive

terms, and d to represent the sum of the subtractive terms of the lower line, or quantity to

be subtracted.

Another mode of proving the rule for the signs in subtraction is the following:

By subtraction we solve the problem,
" Given one of two quantities, and their algebraical

sum, to find the other."

Let A be any algebraical quantity, simple or compound, from which it is proposed to

subtract another simple or compound quantity, B. The quantity A may be conceived to be

the algebraical sum of B, and some other quantity which it is proposed to discover. Call

it x. As A was obtained by annexing to x the polynomial expressed by B, with its proper

signs, the effect of this process will be destroyed by annexing to A the polynomial repre-

sented by B, with its signs changed.
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Sa-b+lab
1

(a
3+&3+ a fr

z

) signifies that the quantity a3
-{-b

3
-{-al

t ^ to De

subtracted from 2<z
3 3a3

6-{-4aZr. When the operation is actually perform-

ed, we have by the rule,

2a3
3a?b+4ab* (a

3+63+aiJ
)=2a

3 3a26+4a^ a3 ft
3 a*3

= a3 Sa^+Safc
3

ft
3
.

When, therefore, brackets are removed which have the sign before them,

the signs of all the terms within the brackets must be changed.

8. According to this principle, we may make polynomials undergo several

transformations, which are of great utility in various algebraic calculations.

Thus,

=03 ft
3

(3a
36 Safe3

)

=a3+ 3ab* (3a*Z>+ b
3
)

And 3*2xy+y*=x2 (2xyf)=y3
('2xyx*).

EXAMPLES OF QUANTITIES WITH LITERAL COEFFICIENTS.

(1) (2)

From a^+fyr+cz/
3 From (a-f6) V-r

3
+.V

;i

4-(a+c)(a-|-z)
3

Take dtfhxy+kf_ Take (a b) -y/X
s+y*+ c (a+j)

3

Rem. a_^x5 ifex/c 3
. Rem.

(3) From mWa^ Smnpyr+^g3 take pa
q
9xa 2pqmnx-\-m

9nt
.

(4) From a(z+i/) &xi/+c(x y) take 4(x+y)+(a+&)^ 7(x

(5)-.From (a+i) (x+ y) (cd) (x t/)+A
3 take (a 6)_

(6) From (2a 56) -v/x+y+(a ft)xy cz3 take 3bxy (5+c):
2

(3a 6)

(7) From2j y+(y 2z) (x 2y) take y 2ar (2y

(8) To what is a+i+c (a 6) (6 c) ( 6) equal?

(9) From ArH-B^+Cz+D take

ANSWERS.

(3) (m
<in*f?qs

)x*+pf
iq*m'in'i

, or (m*n
3

j)
3
^
3
)^

8 (mV p*?), or (mn

(4) (a-4)(x+y)-(a+2&)ry+(c+7) (x-y).
(5) 26

(6) (5a

(7) y+x.
(8) 26+2<r.

(9) (A-A.

MULTIPLICATION.
9. MULTIPLICATION is usually divided into three cases :

(1) When both multiplicand and multiplier are simple quantities.

(2) When the multiplicand is a compound, and the multiplier a simple
uantity.

(3) When both multiplicand and multiplier are compound quantities.
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CASE I.

1 0. When both multiplicand and multiplier are simple quantities, or monomials.

To the product of the coefficients affix that of the letters.*

Thus, to multiply bx by 4?/, we have

5x4=20; xy.yxy;
..5xx 4^=20 xxy=.^xy= product.

11. Powers of the same quantity are multiplied by simply adding their in

dices ; for since, by the definition of a power,
a&=aaaaa ; a'!=aaaaaaa,

..a5 X <f-=aaaaa X aaaaaaa=aaaaaaaaaaaa=au=as+7
.

Also, am=aaa .... to m factors ; a=aaa .... to TI factors ;

..am X an=aaa .... to m factors X aaa .... to n factors ;

=aaaaaa to (m-\-n) factors ;

_am+n
.

It is proved, in the same manner, that am X " X h X ak=am+n+b+k .

*
I. The rule is derived in the following manner : We begin by assuming that when

several letters are written one after another without any sign, their continued multiplica-

tion is understood, and that the operation proceeds from left to right. Then abed will sig-

nify a multiplied by b, that product by c, and that again by d. We shall now prove that in

whatever order these letters or simple factors are arranged, their continued product will

always be the same ;t and, moreover, that they may be grouped into partial products at

pleasure, provided all the letters be employed each time. Thus the above product may be

written bade (the multiplication here, as before, going on by each factor successively from

left to right), and the result will be the same as before
;
or it may be written aXbXcd, un-

derstanding the products separated by the sign X as being previously formed and then

multiplied together.

The demonstration depends upon three propositions, which we shall first establish :

(1) ... aXb=bXa ^OT 'n tne adjoining table of units let b denote the number
6 of units in each horizontal row, and a the number of rows,

then b multiplied by a, or repeated a times, will give the

number of units in the table. But a, which is the number of

horizontal rows, is also the number of units in each column
;

111111 and b is the number of columns
; then a multiplied by b, or

repeated b times, will produce the number of units in the

table again ; whence b multiplied by a is equal to a multiplied by b.

.,_ In a similar manner, from the adjoining table, it may be

i a a a a a proved that

a a a a a a.b . c= . c . b
(-2)

Alsotb&ta.b.c=a.(bc) (3)a a a a a

II. By (1) abcd=bacd= by (2) bcad= by (2) bcda. Thus, we perceive that the factor

a has been made to occupy successively every place from the first to the last. The same

might now be done with the factor b, and so with all the others. Therefore a product is

the same, whatever be the order of its factors.

III. Again. Take aXbXcXdXe. It may be written by (3) aXbcXdXe or by (3)

aXbcdXe, or, instead, by (3) abXcdXf- From which it appears that the factors of a

product may be grouped into partial products at pleasure, and then afterward multiplied

together or conversely.

IV. Let us now suppose that the product 3a362 is to be multiplied by the product 5a2fr.

Instead of multiplying by the whole product 5cfib*, multiply by its factors separately, and we
have 3a3625<5[24. Since the order may be changed at pleasure, bring the numerical factors

together, and the different powers of the same letters; thus, 5X3a2a3i<i2. Grouping the

different powers of the same letters into partial products, as well as the numerical factors,

the result is ISa^b7, which has evidently been obtained by multiplying the coefficients and

adding the exponents of like letters.

t Such a relation o that of a product to its Cueton is called a lymtnttrical relation.
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RULE OF sieya iy MULTIPLICATION.

The product of quantities with like signs is affected with the sign 4- i the

product of quantities with unlike signs is affected with the sign ;

or

-f- multiplied by 4- and multiplied by give 4- ;

-f- multiplied by and multiplied by -}- gi^e ;

or

like signs produce -f- and unlike signs .

The continued product of an even number of negative factors is positive ; of

an uneven number, negative.*

EXAMPLES.

(1) 4a*b*cd X 3abc*d* =
(2) l2-/ayX^x =
(3) Six'/r'xexy*:

3 = 33z-yr
7
.

(4) 13a*b3x3yx5abxy>=
(5) 5xmyX 4^m =+
(6) SOaPfci X Ser&V = 100aa"rP& n+V.

12. When the multiplicand is a compound, and the multiplier a simple

quantity.

Multiply each term of the multiplicand by the multiplier, beginning at the

left hand ; and these partial products, being connected by their respective signs,

will give the complete product, f

EXAMPLES.

(1) (2)

Multiply as+a& +Z*
3

Multiply a3 2a&

By 4a By 3xy

Product, 4a3+ la-b+lab
3
. Product, Zgixy

(3) Multiply 5mn+3m,* 2n by IZabn.

(4) Multiply 3ax 5by^\-7ry by 7abxy.

(5) Multiply 15a-6-f-3a&* 12&3 by bob.

(6) Multiply ax3 li?-\-cx-d by x6.

(7) Multiply -/a-ffc+ T/x*y*3xy by 2 -/r.

(8) Multiply amxa -\-b
m
y
a

cy
m d"xm by xmy

n
.

* Let m, irl be two monomial quantities whose product is required. Ifm,n^ are both addi-

tive quantities, the product mm' is an additive quantity. This is the case of arithmetic.

If the multiplicand m is an additive quantity, and the multiplier m' a subtractive quantity,
the expression mX ( m') indicates that the multiplicand TO is to be subtracted as many
times as there are units in m', or that m' repetitions of the quantity m are to be subtracted,
which is expressed by mm'.

If m is subtractive and m' additive, m taken once is m ; taken twice is 2m tak-

en m' times is m'm.

If m and m' are both subtractive, the quantity m is to be subtracted
'
times. Now

TO subtracted once is -\-m, twice is -f2m ; and m' times is -\-m'm.
t 1st. Suppose the signs to be all plus. The whole multiplicand being to be taken as

many times as is denoted by the multiplier, each of its parts or terms must be taken so

many times. 2d. For the case where some of the signs are negative, see the demonstra-
tion in the next note.
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CASE III.

13. When both multiplicand and multiplier are compound quantities.

Multiply each term of the multiplicand, in succession, by each term of the

multiplier, and the sum of these partial products will give the complete prod-
uct.*

EXAMPLES.

(!) (2) (3)f
a -{- b a -f-6 a b

a + b a b a b

a*+ ab as+a& a2 ab

+ ab+b* abb*

(4) (5)

ab +cd a2+2a6+ 62

a b cd a? 5 2

(6) Multiply 4a3 5a2
fe 8a62

+2Z>
3
by 2a2 3a6 4Z>2 .

4a3 5a2
Z> 8a52

-f 2b3

2a2 Sab 4&2_
8a6 10a*b 16a3

Z>
2+ 4a2i3

8a5 22a"fr 17a362+48a2&3+26a64 86S= product

*
1st. Suppose all the terms of the multiplier to be affected with the sign -)-. The mul-

tiplicand, being to be taken as many times additively as is denoted by the multiplier, must

be taken as many times as is denoted by each term of the multiplier separately, and the

separate results added together, fid. When there are both additive and subtractive terms

in the multiplier and multiplicand. The rale for the signs may be thus demonstrated. Let

a b be multiplied by c d. First multiplying a by c, the product a b

is ac ; but b should have been subtracted from a before the multi- c d

plication ; b units have, therefore, been taken c times in the a, which ac be

ought not to have been so taken
;
hence b, taken c times, must be ad bd

subtracted, and there results ac be as the product of a b by c. ac be ad-\-bd

But the multiplier was c d instead of c ; therefore the multiplicand has been taken *

times too often; d times the multiplicand, which will be of the same form as c times the

multiplicand, viz., ad bd, must be subtracted, and the rule for subtraction is to change the

signs of the quantity to be subtracted. The result is, therefore, ac be ad-\-bd ; com-

paring which with the given quantities we perceive that like signs have produced -}- and

unlike . To render the demonstration still more general, a may represent the assem-

blage of the additive terms of the multiplicand, and b that of the subtractive ;
c and d the

same for the multiplier.

t The results in examples (1), (2), and (3) show, 1. That the square of the sum of two

numbers or quantities is equal to the square of the first of the two quantities plus twice

the product of the first and second, plus the square of the second. 2. That the product of

the sum and difference is equal to the difference of the squares ; and, 3. That the square of

the difference is equal to the sum of the squares minus twice the product
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(7) Multiply a'b al' by h'k hfc'.

a'b aft'

h'khfr
a'bh'k ab'h'k

a'bhk'+ab'hk'
a'bh'k ab'h'k a'bhk'+ab'hk'= product.

(8) Multiply zm+zm-1

j/+z
m-Y+zn*-a

y
3+ &c., by x+y.

* +y

(9) Multiply tf+y* by x*y*.
(10) Multiply x*-f 2ry-fyj

by x y.

(11) Multiply So4 2a36+4a262 by a3 4as
ft+26

3
.

(12) Multiply rH-2r
3+3z3+ 2*+ 1 by z

2
2r+l.

(13) Multiply jz
s+3az Ja

2
by 2z* ax |a

s
.

(14) Multiply a^+aaft+fe
3
by a-

(15) Multiply o^+^+y8
by r

3

(16) Multiply xt+yt+ztxyzzyz by

(17) Multiply together x a, x b, and z c.

(18) Multiply together g-\-h, g-\-h, gTi, and ^ h.

(19) Multiply togetherp-j-<7'P+2<jr> <p+3? andjj-j- 4

(20) Multiply together z 3, : 5, r 7, and z 9.

(21) (a
m an+a2

)x(a
m

a)-

(22) (Sa
5!3

4&y) X (5a
5r+46y) as ex. 2.

ANSWERS.

(9) ar-y.
(10) z+a?y xy

3
y
3
.

(11) 5a7 22

(12) z6 Sr'+l.

(13)

(14) a

(15)

(16)

(17) r3 (a+&+c)i
3
+(afc+ac4-6c)i aftc.

(18) g4_2^+^.
(19) _p

4
+10j3

39+35^3
5
3
+5(>p9

3
-|-24y'.

(20) z*24c 3
+206z3

7442+945.

(21) a*n_am+n+am+3 am+1+an+1 a3
.

(22)

When the multiplicand and multiplier are each homogeneous, the product
will be also ; and the degree of each term of the product will be equal to the

sum of the degrees of a term in the multiplier, and a term in the multiplicand.

This serves conveniently to verify the accuracy of the operation. It is ap-

plicable in the above examples to all except the 12th, 20th, 21st, and 22d.

B
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In multiplying one polynomial by another, there are always two terms of the

total product which are not produced by the reduction of similar terms in the

partial products. These two terms are the term affected with the highest

exponent of any letter, and the term affected with the lowest exponent. If

the terms of the multiplicand, multiplier, and product be arranged in the order

of the powers of some letter,* as is usual, and as may be seen in the above ex

amples, then the two terms in question of the product will be the first and

last, the one being produced by the multiplication of the first of the multipli-

cand by the first of the multiplier, and the other by the multiplication of the

last of the multiplicand by the last of the multiplier. The first of the multi

plicand by the second of the multiplier usually produces a terra similar to that

which is produced from the multiplication of the second of the multiplicand by

the first of the multiplier. The same is the case with the first and third of

each, the first and fourth, the second and fourth, the third and fourth, and so on.

When a polynomial, arranged according to the powers of some letter, con-

tains many terms in which this letter has the same exponent, these terms,

after suppressing from them the letter of arrangement, may be placed in a

parenthesis, or in a vertical column with a vinculum placed vertically on the

right, and the letter of arrangement, with its proper exponent, following after.

The polynomial in the parenthesis, or vertical column, is to be regarded as the

coefficient of the power of the letter which follows, and is to be operated with

exactly as we do with a numerical coefficient; i. en multiply the coefficient

of the letter of arrangement in the multiplicand by the coefficient of the same

letter in the multiplier, and afterward add the exponents of this letter.

EXAMPLE.

Multipli*

Multipl

Product c

multiplica
26

Product c

multiplica

+ 1

Total pr

simpliJ
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t>

-0
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Since x3X^=^4
> the highest power of x is 4, and decreases successively by

unity, while that of y increases by unity ; hence the product is

z4+0.rJ

;y+0.a:
2
2/
2+ O.xy

3 y*=:x*y*= product.

(2) Multiply 3a2+4ox b& by 2a2
6a:r+4z

2
.

3+ 4 5

2 6+ 4

6-j- 810
1824+ 30

4-12+1620
61022+4620

.-. Product =6a4 10a3
a; 22a2z2+ 46az3 20ar*.

(3) Multiply 2a3 3a&2+5&3
by 2a2

5Z>
2

.

Here the coefficients of a2 in the multiplicand, and a in the multiplier, are

each zero ; hence

2+0 3+ 5

2+0 5

4+ 6+ 10

10 Q+1525
16+ 10+1525

Hence 4a5 16a3
Z
2+10a263+15a&4 2566= product.

The coefficient of a4
being zero in the product, causes that term to dis-

appear.

(4) Multiply z3 3z2
+3:r 1 by x2 2ar+l.

(5) Multiply 7/
2

7/a+^a
2
by yi-\-ya a2 .

(6) Multiply ax Zu^+cr
3

by 1 x+x2
r'+z*.

(7) (x
3

ANSWERS.

(4) xSS^+lOx3 10z2+5z 1.

(5) I/* a2

(6) ax a

I

' a

b

c

Or, ax (a

(7) z5
(a

(6+ 0.

(c+6^+ae)a;
2
+(c^+e6)z ce

DIVISION.

15. THK object of algebraic division is to discover one of the factors of a

given product, the other factor being given ;
and as multiplication is divided

into three cases, so, in like manner, is division.

(1) When both dividend and divisor are monomials.

(2) When the dividend is a polynomial, and the divisor a monomial.

(3) When both dividend and divisor are polynomials.

CASE I.

16. When both dividend and divisor are monomials.

Write the divisor under the dividend, in the form of a fraction ; cancel like
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quantities in both divisor and dividend, and suppress the greatest factor com-

mon to the two coefficients.

17. Powers of the same quantity are divided by subtracting the exponent

of the divisor from that of the dividend, and writing the remainder as the ex-

ponent of the quotient.*

Thus, a7 =aaaaaaa ; at=aaaa
a7 aaaaaaa

' '

a4 aaaa

GeneraDy, am=aaaa to m factors ;
au=aaa .... to n factors ;

fcp =&666 to p factors ; b*=bbb to q factors ;

ambf aaa to m factors X bbb to p factors ;

' *

a" &i aaa to n factors X bbb to q factors ;

=aaa ... to (m n) factors X bbb to (pq) factors ,

When a quantity has the same exponent in the dividend and divisor, we have

am am
=am-m=a; but =1.

am am

.-. a=l.
Hence every quantity whose exponent is is equal to 1 .

a3 aaa 1 1

a? aaaaa aa a3
'

But we may subtract 5, the greater exponent, from 3, the less, and affect

the difference with the sign ; hence

3_ 3_._ B> __!.

* The rule for division follows from its object, which is, having one of the factors of a

product given to find the other. As in multiplication we join together die factors of a prod-

uct without any sign, and without regard to order, in division we suppress from the prod-

uct, i. e., the dividend, one of the factors, *'. e., the divisor, to obtain the other, which is the

quotient. Note. The quotient must contain those factors of the dividend which are not in

the divisor. Xote, also, that dividing one of the factors of a'product divides the whole

product. Thus, dividing a5bc by a3, we divide the single factor a3, and get {&bc ; so to di-

vide 16X12 by 8, we divide 16 alone, and get 2X12 for the quotient.

When there are factors in the divisor which are not in the dividend, the quotient may
be expressed in the form of a fraction, as has been previously shown (2, V.). Suppressing
the common factors hi this case amounts to dividing both numerator and denominator by the

same quantity. That such a division does not alter the value of the fraction, will be obvious

from the following considerations :

1. If the numerator of a fraction be increased any number oftimes, the fraction itself wiH
be increased as many times ; and if the denominator be diminished any number of times,
the fraction must still be increased as many times.

2. If the denominator of a fraction be increased any number of times, or the numerator

diminished the same number of times, the fraction itself will, in either case, be diminished

the same number of times.

3. If the numerator of a fraction be increased any number of tunes, the fraction is in-

creased the same number of times ; and if the denominator be increased as many times, the
fraction is again diminished the same number of times, and must therefore have its original
value. Hence both terms of a fraction may be multiplied by the same number, and, by
similar considerations.it win appear, may be divided by the same number without changing
the value of the fraction.

Corollary. Rule. To multiply a fraction by a whole number, multiply the numerator of

the fraction, or divide its denominator by the whole number. To divide a fraction, divide

its numerator, or multiply its denominator.
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Similarly, M
And

s=(:f+*r*
(*~*}~*' and so ou '

a6 1 1

So, also, =.-r,=^;a3 a3"5 a"2

a5

But =as
;

From this it appears that a factor may be transferred from the denominator

to the numerator, and vice versa, by changing the sign of its exponent.

EXAMPLES.

(1) Write a?byc with the factors all in the denominator.

a3
ftc

5

(2) Write
-j

- with the factors all in one line, and also all in the denomi-
J

nator.

For more of the theory of negative exponents, see a subsequent article.

18. In multiplication, the product of two terms, having the same sign, is

affected with the sign -\- i an(J the product of two terms, having different

signs, is affected with the sign ;
hence we may conclude,

(1) That if the term of the dividend have the sign -}-> and that of tue di-

visor the sign -}- the resulting term of the quotient must have the sign -|- ;

because -|- X + gives + .

(2) That if the term of the dividend have the sign -j-> and that of the divisor

the sign , the resulting term of the quotient must have the sign ;
because

X gives +.
(3) That if the term of the dividend have the sign , and that of the di-

visor the sign -|-> the resulting term of the quotient must have the sign ;

because -\- X gives .

(4) That if the term of the dividend have the sign , and that of the di

visor the sign , the resulting term of the quotient must have the sign +.

RULE OF SIGNS IN DIVISION.

-J- divided by +, and divided by , give + ,

divided by -{- and -|- divided by , give ;

or,

like signs give -f, and unlike , the same as in multiplication.

+a& ab ab + ab- =-4-o:-= 4-o: -= b;
-= o.

-fa
' a +a a

EXAMPLES.

(1) Divide 48a363c2<2 by 12a62
c.

rf 48aaabbbccd
rr T
12abbc

cd3



DIVISION. 23

(7) G6cr
'-:-o

n6nc=ain
(

(8) a3lDAn+1crHI4-a
minc=

(9) 5aP-?r 3ai
)+r&c-1=|a-

(10) am-"-:-aP-('=an*-n~'

(11) ab+ ab= 1.

(1-2) abc-abc= 1.

(13) 64- 6-=l.

(14)

(15)

CASE II.

19. When the dividend is a polynomial, and the divisor a monomial

Divide each of the terms of the dividend separately by the divisor.*

EXAMPLES.

(1) Divide Ga-x+y
6

iSa'aty
6+15a:cy by

V
2 :

(2) Divide 15a*fec 20acy-+5c<f
2
by 5aic. Ans. 3a+4|

--
^.

(3) Divide x"+i_xB+3
4-x

n+3 x"^ by z". Ans. x ^-fx3 r*.

(4) Divide 5(a+6)
3

10(a+Z>)-+15(a+Z>) by o(a+6).
Ans. (a+iy-f 2(a+6) 3.

(5) Divide 12a4
y 16a!y+20a6

y
4 28aY by 4a4y'.

Ans.

CASE; in.

20. Wlien both dividend and divisor are polynomials.

1. Arrange the dividend and divisor according to the powers of the same

letter in both.

2. Divide the first term of the dividend by the first term of the divisor, and

the result will be the first term in the quotient, by which multiply all the terms

in the divisor, and subtract the product from the dividend.

3. Then to the remainder annex as many of the remaining terms of the

dividend as are necessary, and find the next term in the quotient as before.

(1) Divide a4 4o3r+6asis 4<tr3-fr by a* Sax+i8
.

a3
2ax-fz

9
)
a*-t4a3

x-f Ga'r
3 4ax3-fz

4
(a-2ax+i*

a* 2a3z a-3?

2a3
x-\-oa

1X' -lax3

a?!3 2<zx3+r*

* This rule follows from that for multiplication, which requires each term of the multipli-

cand to be repealed as many times as is expressed by the multiplier.
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Arranging the terms according to the descending powers of ,r, we have

2s 2a:r+a
3
)
x* 4ar3+6asx2 4a3

ar+a
4
(z

2

a2
.r
2

r2 2a3
:r

(2) Divide x*+x?y
a
-\-y* by

*
It has been shown (13) that when the dividend (which is the product of the divisor and

quotient) is arranged as directed in the rule, its first term is produced without reduction by
the multiplication of the first term of the divisor by the first of the quotient. Hence the

rule above for finding the latter. This first term of the quotient being found, and the di-

visor being taken away from the dividend as many times as is expressed by this term, the

remainder must contain the divisor as many times as is expressed by the second and re-

maining terms of the quotient. Hence the remaihder may be regarded as a new dividend,

and the object being to find how many times it contains the divisor, it must be arranged in

the same manner as was the given dividend, and the first step will be the same as before.

Similar reasoning will apply to the rest of the process.

Note. The arrangement of the terms is for convenience. The term having the highest

or lowest exponent of some letter might be selected from the dividend and remainders with-

out any arrangement. The operation must always, however, begin with this term, as a

reference to the last example will show
;
for if we attempt to commence with the term

6 2
.
2

, the third of the dividend, for instance, we perceive that this is produced by reduction

from the term 2a;2 in the second line, the term 4a2:r2 in the fourth line, and the term 2X3

in the sixth. The first of these is produced by the multiplication of the first of the quotient

by the last of the divisor, the second by the multiplication of the second of the quotient by
the second of the divisor, and the third by the last of the quotient and first of the divisor.

It is not till the first and second terms of the quotient have been found by the rule above

given, that any portion of the.term Ga-x- presents itself to be divided, or that we can know

what part of it ia to be used as a dividend.

In the same manner, it may be shown that it would be impossible to begin with the second

term of the dividend 4az3 until the first term of the quotient has been found, which, multi-

plied by the second of the divisor, produces 2ax3, a part of lazfl, and the subtraction

leaves the other part 2ax3
,
which now we know is the product of the first of the divisor

by the second of the quotient, which latter we may then find.

The first of the divisor multiplied by the second of the quotient, and the second of the

divisor by the first of the quotient, usually produce the same power of the letter of arrange-

ment, and reduce together ; the first and third of each, together with the two second terms

of each, usually produce the same power, and so on. It is only the first of the divisor and

first of the quotient, or last of the divisor and last of the quotient, which always produce a

term that does not reduce with any other term.

N.B. The arrangement may begin with the lowest as well as the highest power of any

letter, and go on increasing instead of decreasing. When either of these arrangements is

observed, if the first term of the divisor in any part of the operation is not contained exactly

in the first term of the remainder, the division is impossible. By varying the arrangement,

therefore, or simply considering which terms would come first, using different letters of ar-

rangement, we may often determine beforehand by inspection whether the division is pos-

sible or not.
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Another form of the work which has the convenience of placing the quotient,

which is the multiplier, tinder the divisor, which is the multiplicand, is the

following.

Dividend, i4+a%2+ y* x
s
-4-xy-fy

3
, divisor.

+x*if xt^xy+y2
, quotient.

x3
y 3*y xy

3

(3) Divide a6 a36s+2as6 ab*+b
5
by a3 a

a5 _Q 5 i 53

a*a4b a36J

a3
6-+ a-Vab*

Arranging the terms according to powers of 6, we get
0*64- a5

The results we have obtained in these two arrangements are apparently
different ; but then- equivalence will be established as follows :

(1) (a
3

ab+fc) (a?+a?b ab3)=a5
ePV*+2tPll* a 64

Add remainder =
Proof s

g3fc*-f2a
s
fc
3-g

Add remainder =
Proof ..... b*a

The moment we arrive at a term of the quotient in which the exponent of

the letter of arrangement is less than the difference of the exponents of this

letter in the last terms of the divisor and dividend, we may be sure that the

divisiou will not terminate. If the divisor and dividend be arranged in the re-

verse order, that is, beginning with the lowest power of a letter, then the

division will not terminate when the exponent of this letter in the term of

the quotient is greater than the difference of its exponents in the last terms of

the divisor and dividend.

Thus in the following example.
7

cuf+ax* 3*+3?+a
x*

ax*

3* x 1 ax*

D
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The last term of the quotient must be x4
, in order that, multiplied by a, the

last of the divisor, it may produce the last of the dividend. If, therefore, the

division is not completed when this term containing x* is obtained, it will not be.

EXAMPLES FOB PRACTICE.

(1) Divide a2
2afc+6

2
by a I.

(2) Divide a2
+4aar+4a:

2
by a+2z.

(3) Divide 12r 192 by 3x 6.

(4) Divide Gz6 6y
6
by 2 2

27/
2

.

(5) Divide a6 3a4
fc
2+3a2

Z>
4 66 by a3 3a26+ 3aZ>2 63 .

(6) Divide x?+53?y-\-5xy*+y
3
by za+4;r?/+2/

2
.

(7) Divide x5 y
5
by a; y.

(8) Divide a4
fc
4
by a3+a26+a&2+&3

.

(9) Divide Xs 9a:
3
+27ar 27 by x 3.

(10) Divide x*+y* by x+i/.

(11) Divide 48Z3 76a 2 64a2
a:+105a

3
by 2a: 3a.

(12) Divide |r
5

+a:
2+|a:+| by ir+1.

(13) Divide 52m6 93m4^ 70m3p2+ 48m,2
jf>

3
27mp

4
by 13;?i

3

(14) Divide 33a3i3 77a2i4+121a365 by 3a26 7a63
4-llai

3
.

(15) Divide (6p*l2jpq
3

6p
s
q+12q*) by (p q).

(16) Divide (lOOa
5 440a4

Ar+235a
3^2 30a2

P)*by (5a
3

(17) Divide (g* 4g%+6^2
4g/t

3+^) by (7i
2 2

(18) Divide (37a
2m2 26a3m+3a4 14am3

) by (3a
2

5a??i+2ni
2
).

(19) Divide (a" 6) by (a ft)
and (a

6+i6
) by (a+i).

(20) Divide (a
7 67

) by (a 6) and (a
7
+Z>

7
) by (a+6).

(21) (^_

ANSWERS.

(1) a-b.

(2) a+2x.

(3)

(4)

(5) a3
+3<

(6) x+y.
(7)

(8) a I.

(9) x2-(

(10) x3
a

(11) 24z2 2ax 35a2

(12) x*+.
(13) 4m2 5mp 9p

2
.

(14) Ila62
.

(15) 6p
3

12?
3

.

(16) 20a2
f

(17) g2-S

(18) a2 7a??t.

f a6+ a46 + a362+ a2i3+ at4+ 65
,
and
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a6 a5&+ai

, and

aV>+l* 7.

EXAMPLES WITH LITERAL EXPONENTS.

(1) Divide Sa3" 6a2n6B+6aD6Sn 2fe3n by an &-.

a_&n
)
go30 6a2n&n+6a n&2n 2&30 (2G

211 4aD6n+263a

2a3" 2a2"6n

in 26s"

2n 2&3"1
.

(2) Divide ar
m+ 1

4-x
m
y+3r2/

m+ym+1
by

(3)' Divide an z by a x.

(4) Divide z*a+i2iyn
-|-y

w
by ot?

a+xD
y
a
-\-y-

a
.

(5) Divide am+n6n 4am+ n- 1 62a 27am+n- J
by

(6) Divide a3 c_a2m+a-ljl-pca

ANSWERS.

(2) x+y.

(3) o-'+a-j:+fl

(4) x2" xn
y
n
-{-y-

n
.

(5) am+3am
-lb

(6)

EXAMPLES WITH LITERAL COEFFICIENTS.*

(1) Divide ax5+ax4+6x4+ax3+6x3+cx3+ax3+&z2+cr2+&x+cjr+c by

Arrange the terms of the dividend in the following manner, in order to keep
the operation within the breadth of the page.

|-c) as? -\- a
b

x*-\-c x3

a x*4-a x34-a



462 a3 1663

c2 4. 462c

4- 26c2

2C3

4. 8b3

462c

26e2

+ "
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(10) Divide

a4

a3b

4-a
?
fr

ab3

x4-a5 x* a?b

ai5

Iz tffc by a3
Iz'+a'z

ab\

When there are negative exponents of the letter of arrangement, they
come after the term containing z, t. c., the term in which z does not appear,
those which have the greatest absolute value being placed last.

(11) Divide z8 z+lOz+| V**-1 *r^+Zx-* by z3 2z 5

-HT-.

ANSWERS.

(4) z3-4-(r a)z-f-(r
3

ar-j-6), and remainder is r3 arj
-j-6r c.

(5) z3 (6+c)z+6c.
(6) z3 az+6.
(7) 2a+b 3c.

(8) z-rf.

(10) a* z3 <

-J-62
_a^:

(11) xs+gz-1
.

2,1. In those cases in which the division does not terminate, and the quotient

may be continued to an unlimited number of terms, the quotient is termed an

infinite series, and then the successive terms of the quotient are generally reg-
ulated by a law which, in most cases, is readily discoverable.

EXAMPLES.

(1) Divide 1 by 1 z.

I z) 1

1 z

4-z
3 z3

The quotient in this case is called an infinite series, and the law of formation
of this series is, that any term in the quotient is the product of the immedi-

ately preceding term by z.

(2) Divide 1 by 1-fz. Ans. 1 z+z2
z-fz*-----

(3) Divide 1+zby 1 z. Ans. 14-2z-|-2z
s+2z3

-f 2z-j_____

(4) Divide 1 by z-j-1. r-1
z-^-f-z-

3_z^+z"*_ ...

(5) Divide z a by z 6.

Ans. 1 (a ijz-
1

(a 6)4z~ (a b)b*x~*
(6) Divide 1 by 1 Sz+z*. Ans. 1 -fSi-f-Sz^ 4z3+5z*-f ....
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22. When a polynomial is the pi-oduct of two or more factors, it is often

requisite to resolve it into the factors of which it is composed, and merely to

indicate the multiplication. This can frequently be done by inspection, and

by the aid of the following formulas :

(x+a)(x+b)=x'
2+(a+b)x+ab ..... (1)

(x+a)(z b)=x*+(a b)x ab ..... (2)

(x a)(x+b)=x* (a b)x ab ..... (3)

(xa)(xb)=x* (a+b)x+ab ..... (4)

(a+b)(ab)=a*b*.. .............. (5)

(+ l)(n+ 1)=w2+2+ 1 ............ (6)

(n l)(n l)=n
2

2ra+l ............ (7)

EXAMPLES.

(1) Resolve ax^-^-bx* crc
2 into its component factors.

Here ao^-f-kr
2 cx2=.T2

(a+ 6 c).

(2) Transform the expression ns
-{-2n'

2
-\-n into factors.

Here 3+2 2+n=w( 2
+2ra+l)

=n(n+l)(n+l) by (6)

(3) Decompose the expression
2 x 72 into two factors.

By inspecting formula (3), we have 1= 9+8, and 72= 9X8;
hence rr

3 x 72=(x 9)(x+8).

(4) Decompose 5a2
6c-j-10a&

2
c-j-15a&c

2 into two factors.

(5) Transform 3m4n5 6msn5
p-{-3m

2n4pz into factors.

(6) Transform 3b*c3b<? into factors.

(7) Decompose x2+8x+15 into two factors.

(8) Decompose z3 Sz2 I5x into three factors.

(9) Decompose a;
2 x 30 into factors.

(10) Transform a2 & 2+2&c c2 into two factors.

(11) Transform a?x x3 into factors.

(4) 5abc(a+2b+3c).

(5) 3m2
?i
4
(mn p)*.

(6) 3bc(b+c)(b c).

(7)

ANSWERS.

(8) 2

(9) (r+5)(T-6).
(10) (

a+bc)(a 6+c).

(11) x(a+x)(a-x).

23. By the usual process of division we might obtain the quotient of an b"

divided by a b, when any particular number is substituted for n ; but we
shall here prove generally that an b a

is always exactly divisible by a b, and

exhibit the quotient.

Tt is required to divide an
fc
n
by a b.

""

Rem.

Rem. tuider another form,

an_Z,n
Hence,
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Now it appears from this result, that a Z will be exactly divisible by
a 6, if a"" 1 ba

~ l be divisible by a b ; that is, if the difference of the same

powers of two quantities is divisible by their difference, then the difference

of the powers of the next higher degree is also divisible by that difference.

But ef 62 is exactly divisible by a b, and we have

And since a3 ft
3 is divisible by a 6, it appears, from what has been just

proved, that a3 b3 must be exactly divisible by a b ; and since a3
Z*
3

is di-

visible, a4
Z
4 must be divisible, and so on ad infinitum.

Hence, generally, a" 6" will always be exactly divisible by a i, and give

the quotient

_
In a similar manner, we find, when n is an odd number,

And when n is an even number

(5)

(6)

(7)

By substituting particular numbers for n, hi the formulas (5), (6), (7), we

may deduce various algebraical formulas, several of which will be found hi the

following deductions from the rules of multiplication and division.

USEFUL ALGEBRAIC FORMULAS.

(1) a3
&*=(a+6)(a b).

(2) a" 64=(a3+63
)(a

2 &s
)
= (a

s+63
)(a+6)(a 6).

(3) a3 b3=(a?+ab+b-)(ab).
(4) a3+&3=(a3

(5) a6 b*=(

(6) a 66=(a
s

(7) a6 66=(
(8) a* &=(
(9) (a

3
&*)-i-(a_6)=a

(10) (a
3

&3)-:-(a &)=a
s

(11) (a
s
+fc

3
)-:-(a+6)=a

3 a

(12) (a* 54)-^. (a-(-)=a
3

tfb+ab3 b3 .

(13) (a
5

&s)_:_(a
_&)=a+a36+a2

fe
3
4-a&

3+&4
.

(14) (a
5
4-fe

(15) (a
6 &6)-r(a

3
^Jzs

DIVISION BY DETACHED COEFFICIENTS.

24. Arrange the terms of the divisor and dividend according to the success-

ive powers of the letter, or letters, common to both ; write down simply the

coefficients with their respective signs, supplying the coefficients of the absent

terms with zeros, and proceed as usual. Divide the highest power of the

omitted letters in the dividend by that of the omitted letters in. the divisor,

and the result will be the literal part of the first term in the quotient. The
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literal parts of the successive terms follow the same law of increase or de-
crease as those in the dividend. The coefficients prefixed to the literal parts
will give the complete quotient, omitting those terms whose coefficients ar
zero.

EXAMPLES.

(1) Divide 6a4 96 by 3a 6.

36)6+ 0+0+096(2+4+8+16
612

12

1224
24

2448
4896
4896

But a44-a=a3
, and the literal parts of the successive terms, are, therefore

a3, a2, a1
, a, or a3

, a2
, a, 1

; hence, 2a3+4a2+8<z+16= quotient.

(2) Divide 8a5 4a4z 2a3a;2+a2
ar

3

by 4a2 z2
.

4+01) 842+1 (21
8+0 2

-4+0+1
_4_

Now, a5
-^-a

2=a3
; hence a3 and a?x are the literal parts of the terms in the

quotient, for there are only two coefficients in the quotient ; therefore

2a3 a2.r= quotient required.

(3) Divide x* 3ax3 8a2z2+18a3
a: 8a4

by z2+2az 2a2
.

(4) Divide 3y*+3xy* Wy 4Z3 by x+y.
(5) Divide 10a4 27a3z+34a2z2 ISaz8 Sr1

by 2a2
3az+4:r

s
.

(6) Divide a4+5a3+a+5 by a3
+l.

ANSWERS.

(3) z2 5az+4a2
. I (5) 5a2 6ax 2ar2.

(4) _4z2
+3i/

2
.

I (6) a+5.

SYNTHETIC DIVISION.

RULE.*

25. (1) Divide the divisor and dividend by the coefficient of the first term in

* The rule here given for Syntlvetic Division is due to the late W. G. Homer, Esq., of

Bath, whose researches in science have issued in several elegant and useful processes,

especially in the higher branches of algebra, and in the evolution of the roots of equation of all

dimensions.

In the common method of division, the several terms in the divisor are multiplied by the

first term in the quotient, and the product subtracted from the dividend ; but subtraction is

performed by changing all the signs of the quantities to be subtracted, and then adding
the several terms in the lower line to the similar terms in the higher. If, therefore, the

signs of the terms in the divisor were changed, we should have to add the product of the

divisor and quotient instead of subtracting it. By this process, then, the second dividend

would be identically the same as by the usual method. We may omit altogether tlu>

products of the first term in the divisor by the successive terms in the quotient, because

in the usual method the first term in each successive dividend is cancelled by these prod-

ucts. Omitting, therefore, these products, the coefficient of the first term in any dividend
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the divisor, which will make the leading coefficient of the divisor unity, and

the first term of the quotient will be identical with that of the dividend.

(2) Set the coefficients of the dividend in a horizontal line with their proper

signs, and those of the divisor, with the signs all changed except that of the

first, in *Tertical column on the right or left, drawing a line under the whole,

underneath which to write the quotient.

(3) Multiply all the terms so changed by the first term in the quotient, and

place the products successively under the corresponding terms of the dividend,

in a diagonal column.

(4) Add the results in the second column, which will give the second term

of the quotient ; and multiply the changed terms hi the divisor by this, placing

the products in a diagonal series, as before.

(5) Add the results in the third column for the next term in the quotient,

by which, again, multiply the changed terms in the divisor, placing the prod-

ucts as before.

(6) This process, continued till the last fine of products extends as far to the

right as the dividend, will give the same series of terms as the usual mode of

division.

EXAMPLES.

(1) Divide a5
Safix+Wa?!? lOa^+Sax* a* by a 2ax+a?.
I i_5_j_iO 10+5 1

+2
1

+ 2 6+ 62
_ 1+ 33+1

1 3+ 3 1

Hence a3
Sa-z+Sa-r* r*= quotient.

In this example the coefficients of the dividend are written horizontally, and

those of the divisor vertically, with all the signs of the latter changed, except

the first. Then -|-2 and 1, the changed terms in the divisor, are multiplied

by 1, the first term of the quotient, which is written in the horizontal line at

the bottom, and is the same as the first term of the dividend ; the products

+2 and 1 are placed diagonally, under 5 and + 10, the corresponding
terms of the dividend. Then, by adding the second column, we have 3 for

the second term in the quotient, and the changed terms + 2 and 1 in the

divisor, multiplied by 3, give 6 and +3, which are placed diagonally un-

der + 10 and 10. The sum of the third column is +3, the next term in

the quotient, which, multiplied into the changed terms of the divisor, gives

+ 6 3, for the next diagonal column. The sum of the fourth column is 1,

and by this we obtain the last diagonal column 2+1. The process here

terminates, and the sums of the fifth and sixth columns are zero, which shows

that there is no remainder. If the last terms did not reduce to zero by addi-

tion, their sum would be the coefficients of the remainder ; the quotient is com-

pleted by restoring the letters, as hi detached coefficients.

Having made the coefficient of the first term in the divisor unity, that co-

win be the coefficient of the succeeding term in the quotient, the coefficient in the first

term of the divisor being unity ; for in all cases it can be made unity by dividing both

divisor and dividend by the coefficient of the first term in the divisor. The operation, thus

implified, may, however, be farther abridged by omitting the successive additions, except
so much only as is necessary to show the first term in each dividend, which, as before re-

marked, is also the coefficient of the succeeding term in the quotient.
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efficient may be omitted entirely, since it is of no use whatever in continuing

the operation here described.

(2) Divide Xs Stf+ISx
4 24r5

+27ar
2 13x+5by x* 2r5

+4a:
2 2z+l

15+1524+27 13+5
+ 2 6+ 10

_ 4+1220
+ 2 6+ 10

_ 1+ 35
13+ 50000

Hence z2 3z+5= quotient required.

(3) Divide a5+2a4i+3a362 a2
Z>
3 2afc4 3& 5

by a2+2a&+3&2
.

1+2+3 123
2+0+0+ 2

3+0+0+ 3

1+ +01
Hence a3

+0-a
2
6+0-a&

2 &3=a3 &3= quotient.

(4) Divide 1 a: by 1+ z. Ans. 1 2x+2x2 2x3+, &c.

(5) Divide 1 by 1 x. Ans. l+ :r+z
2+rj+, &c.

(6) Divide x1
y

1

by x y. Ans. x6
+.r

5
z/+

4
i/
2+r3

7/
3
+a:

2
7/
4
+a:?/

5
+3/

i:f
.

(7) Divide a6 3a4x-+ 3a2x* x6
by a3 3a2

.r+3ax
2 r5

.

Ans. a3

(8) Divide a5 5a4 +10a3
:r
2 lOa^+Sa.r4 z5 by a2

Ans. a3 3a2x+3ax2 x8 .

(9) Divide 4i/
6

24?/
5
+607/

4
807/

3
+60?/

2
24i/+ 4 by 2i/

3
4r/+2.

Ans. 2^ 8i/
3
+127/

2
8^+2.

THE GREATEST COMMON MEASURE.

26. A measure of a quantity is any quantity that is contained in it exactly,

or divides it without a remainder ; and, on the other hand, a multiple of a

quantity is any quantity that contains it exactly. Thus, 5 is a measure of 15,

and 15 is a multiple of 5 ; for 5 is contained in 15 exactly 3 times, and 15 con-

tains 5 exactly 3 times, or is produced by multiplying 5.

27. A common measure, or common divisor, of two or more quantities, is a

quantity which is contained exactly in each of them.

28. The greatest common measure, of two or more quantities, is composed
of all the prime* factors, whether numerical, monomial, or polynomial factors,

common to each of the quantities ; 3x is a common measure of 12ax and

I8bx, and 6x is the greatest common measure of 12a.r and 18Z.r. The great-

est common divisor of 2x7a(i+ c)e and 2x3am(>+c) is composed of the

common prime factors 2a(6+c) ; the factors 7d of the one and 3 of the other

make no part of the common divisor.

29. To find tiie greatest common measure of two polynomials.

Arrange the polynomials according to the powers of some letter, and divide

that which contains the highest power of the letter by the other, as in division
;

then divide the last divisor by the remainder arising from the first division ;

consider the remainder that arises from this second division as a divisor, and

* A prime number or a prime algebraic quantity is one which is divisible only by itself

or unity.



GREATEST COMMON MEASURE. 35

the last divisor as the corresponding dividend, and continue this process of di-

vision till the remainder is ;
then the last divisor is the greatest common

measure.

Note 1. "When the highest power of the leading quantity is the same in

both polynomials, it is indifferent which of the polynomials is made the divisor,

the only guide being the coefficients of the leading terms of the polynomials.

Note 2. If the two given polynomials have a monomial factor common to all

the terms of both, it may be suppressed ; but as it forms part of the common

measure (28), it must be restored at the end of the process by multiplying it

into the common measure which is in consequence obtained.

Note 3. If any divisor contain a factor, which is not a factor also of the divi-

dend, that factor may be rejected, as such factor can form no part of the great-

est common measure, which is composed of the common factors alone.

\.-'e 4. If the coefficient of the leading term of any dividend be not divisible

by that of the divisor, it may be rendered so by multiplying every term of the

dividend by a proper factor, to make it divisible. This new factor thus intro-

duced, not being a common factor, does not affect the common measure.

If it were already a factor of the divisor, it could not be thus used ; the

remedy, in this case, would be to suppress it in the divisor, according to Note 3.

In order to prove the truth of this rule, we shah
1

premise two lemmas.*

LEMMA 1. If a quantity measure another quantity, it will also measure

any multiple of that quantity. Thus, if d measures a, k will also measure m
times a, or ma; for, let a=hd, then ma=mhd, and, therefore, d measures

ma, the quotient being mh.

LEMMA 2. If a quantity measure two other quantities, it wiD also measure

both their sum and difference, or any multiples of them. For, let a=hd, and

i=>W, then d measures both a and 6; hence a-^b=hd^zkd=d(h^k),
and, therefore, d measures both a-{-b and a 6, the quotient being Ji-\-Tc in

the former case, and h k in the latter : and by lemma 1, d measures any

multiples of a-^-b and a b.

Now, let a and b be two polynomials, or the terms of a fraction, and let

a divided by b leave a remainder c

b e d b) a (m
c d leave no remainder, as is shown m b

in the marginal scheme. Then we have, by the c) 6 (n

nature of division, these six equalities, viz. : n c
'

a mb=c .... (1) a=mb-{-c .... (4) d) c (p
b nc =d .... (2) b=nc-{-d .... (5) p d

cpd=0 .... (3) c=pd .... (6)

where the equalities marked (4), (5), (6) are not deduced from those marked

(1), (2), (3), but from the consideration that the dividend is always equal to

the product of the divisor and quotient, increased by the remainder.

Now, by (6) it is obvious that d measures c, since c=pd ; hence (Lemma
1) d measures nc. and it likewise measures itself; therefore (Lemma 2) d
measures nc-j-t/, which by (5) is equal to b ; hence, again, d, measuring b and

c, measures mb-\-c by the Lemmas 1 and 2.

* A lemma is a preparatory proposition, to aid in the demonstration of the main proposi-

tion which follows it.
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.-. d measures a, which is equal to mb-\-c by (4).

Hence d measures both the polynomials a and b, and is consequently a

common measure of these polynomials ; but d is also the greatest common
measure of a and b ; for if d' is a greater common measure of a and 6 than d
is, it is obvious that by (1) d' measures a mb, or c ; and d' measuring both b

and c, it measures b nc, or d by (2) ; hence d' measures d, which is absurd,

since no quantity measures a quantity less than itself ; therefore d is the

greatest common rneasure. Q. E. D.*

30. If the greatest common measure of three quantities be required, find

the greatest common measure of two of them, and then that of this measure

and the remaining quantity will be the greatest common measure of all three. f

a.

31. If the two polynomials be the terms of a fraction, as r, and d their

greatest common measure, then we may put a=da', and bdb'; hence

?= = , and, since a', b' contain no common factor (28), by dividing both
b db' b'

numerator and denominator of a fraction by their greatest common measure,

the resulting fraction will be simplified to its utmost extent, and thus the pro-

posed fraction will be reduced to its lowest terms.

* These letters stand for the Latin words quod erat demonstrandum, signifying which

was to be demonstrated. Another mode of demonstrating the same is as follows : Let A
and B represent the two given quanties, D their greatest common divisor, Q, the quotient

of A by B, and B, tlie remainder. We shall first prove that the greatest common divisor

of A and B is the same as the greatest common divisor of B and R. Represent the hitter

byD'.
A BO, . R . A BQ, R

A=Ba+R, /. ^=-^+5, and ^=^+^.
A and B being divisible by D, R must be, because a whole number can not be equal to

a whole number plus a fraction. Again, B and R being divisible by D7
, A must be, for the

sum of two whole numbers can not equal a fraction. Finally, D, a common divisor of B
and R, can not be greater than their greatest common divisor D' ; and D', a c . d . ofA arid

B, can not be greater than their g . c . d . D ; i.e., D can not be greater than D', and IX can

not be greater than D.

Or thus : since

A=BQ,+R,
the greatest common divisor D ofA and B, must divide R. Represent the three "quotients

by A', B', and R'; then

A'=B'Q,+R'.
B' aud R' have no farther common factor, for if they had, it must by this equality divide

A ; then A' and B' would have still a common factor, and D, the greatest common divisor

of A and B, would not contain all the common factors of these quantities, which is contrary

to the definition. Since B' and R', -which are the quotients of B and R by D, can have no

farther common factor, it follows that the greatest common divisor of B and R is equal to

D ; then it is the same as that of the quantities A and B.

In pursuing the rule for finding the g .c .d., we arrive at a remainder which exactly di-

vides the preceding divisor, and which is, therefore, the g . c . d . of itself and this preced-

ing divisor ; also by the above demonstration of that divisor and its dividend, and so on up
to the given quantities.

t For suppose we have the three quantities A, B, C ; let D be the greatest common di-

visor of A and B, and D' that ofD and C. According to the definition, D is the product of

the common factors ofA and B, and D' is that of the common factors of D and C ; then D7
is

the product of the common factors of the three quantities A, B, C
; therefore D' is their

greatest common divisor.
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EXAMPLES.

(1) "What is the greatest common measure of 4r2
y
3r4 and 8-r

4

Here 4 is the greatest common measure of 4 and 8, and x3
*/

3:* is that of the

literal parts ;
hence 4x2

y
sz3 is the greatest common measure required.

r
(2) Find the greatest common measure of ^^_ .

xy
2
-\-y

s=y2
(z-\-y) ; rejecting the factor y*

x-L-y) x*y- (xy

Hence z+y is the greatest common measure sought, and

x'-xy+y**
reduced fraction.

x y

(3) Required the greatest common measure of the two polynomials

60* 6ay+2aj/
3

2y* .... (a)

12as I5ay +3y* .... (6).

Here 6a3
6a-y+'2ay

i
2y

3=2(3di
3a*y+ay

3
y
3
)

12a3
loay +3y' =3(4a2

bay +y) ;

And therefore, by suppressing the factors 2 and 3, which have no common

measure, and which, not being common factors of the two given quantities, do

not affect the common divisor, we have to find the greatest common measure

of

3a3 Za-y+ay* y
3 and 4a3

4a oay+y
3
)
3a3 3asy+ ay

3
y
3

4

1203 12a2
y+4a;/- 4y* (3a

12a3
locfy+Say*_
3(f-y+ ay- 4^
4

3y

19^=19^ ( a y)

Suppressing 19y*, by note 3, rule,

a y) 4a* Say+y3
(4a y

Hence a y is the greatest common measure of the polynomials a and 6.

The factor 4 is introduced into the dividend in this example to render it di-

visible by the divisor. This can be done, because 4 is not a factor of every
term of the divisor, and therefore not a factor of the divisor. The quantities

employed, after introducing or suppressing factors, are different from the given,

but as they have the same greatest common divisor, and as the object is to find

this, the circumstance is immaterial.

(4) Required the greatest common measure of the terms of the fraction
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a6+ a5x a4x2 aV

Here a2
is a simple factor of the numerator, and a3

is a factor of the denomi-

nator; hence a? is the greatest common measure of these simple factors, which
must be reserved to be introduced into the greatest common measure of the

other factors of the terms of the proposed fraction
; viz. :

a4 x4 and a3-f a
2x ax2 x3

.

d*-\-a?x ax* x3
)
a4 x4 (a x

a4+a3x (Px* ax3

2a2x2 2x4=2x2
(a

2 x2

) ; rejecting 2x

a2 x2
)
a3+asx ax2 x3 (a+x
a3 ax2

a?x3?
a2x x3

Therefore, restoring a
2
, the greatest common measure, is a2

(a
z x3

).

q6_^__ (a
6 a2

x*)-i-a
2
(a

2 x2
)

a

.-. a6+a5x a4x2 a3x3= (a
6
4-a

5x a4x2 a3x3
)-i-a

2
(a

2 x2
)

=
a

ADDITIONAL EXAMPLES.

(1) Find the greatest common measure of 2a2x2
, 4x

2
i/
2

, and 6x3
y.

(2) Find the greatest common measure of the two polynomials a3 a26

363
, and a2 5a5+ 462

.

(3) What is the greatest common measure of x3
xy* and x3

-^-2xy-^-y- 1

(4) Find the greatest common measure of x8
y
s andx13

y
13

.

(5) Find the greatest common measure of the polynomials
'

(6_c)x
2

6(26 c)x+i
3 ..... (a)

(b+c)r>l(2b+c)x"~+b
3x ..... (6).

(6) Find the greatest common measure of the polynomials
x4_ 8x3+21x2 20x+4 ..'... (a)

2X3 12x2+21x 10 ..... (b).

(7) 7/3_ 5y*z 4;yz
2+2z3 and 7y*z+Wyz*+3z

3
.

(8) Also of (.r
j+a2x2+a4

)
and (x

4+ax3 a3x a4
).

(9) Also of (7a
2 23a6+66

2
)
and (5a

3 186a2
4-lla6

2 6b 3
).

(10) Also of (5a
5
4-10a"5+5a

362
)
and (a

3
Z>+2a

262 -j-2a&
3+t4

).

(11) Also of (6o
5+ 15a46 4asc2 10a26c2

)
and (9a

36 27 26c 6a6c5

(12) Also of (a

(13) Find the

62
, and a8 6s.

and (a^n-^-a

c. d. of the three quantities a3
-\-3a-b-\-3ab--{-b

y
, a--\-2ab

ANSWERS.

(8) x2+ax+a2
.

(9) a 36.

(10) a+ 6.

(11) 3a2
2c*.

(12) aa

(13) a-

(1) 2x*. (5) x-6.

(2) a 6. (6) x 2.

(3) x+y. (7) y+ z.

(4) x-y.
A quantity is said to be independent of a letter when it^oes not contain this

letter, and, therefore, does not depend upon it for its value.

Note. In seeking for a common divisor, we find ourselves often working with polynomi-
als different from the given, bat always with such as have the same common measure with

the given polynomials.
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PROPOSITION. A divisor of a polynomial, which is independent of the letter

of arrangement of that polynomial, must divide separately each of the multi-

pliers of the different powers of that letter.

DEMONSTRATION. Let Axm4-B.r
m~1 -

r-Cz
II>-3

, &c., be the polynomial, and

D the divisor. The quotient must contain every power of the letter of ar-

rangement that the dividend does, since the quotient, multiplied by the divisor,

must produce the dividend, and the letter of arrangement is not contained in

the divisor. The quotient must, therefore, be of the form
3
, <fcc., multiplying which by the divisor gives

*, &c., the original dividend, the multiplier of each power of x in

which is evidently divisible by D. Q. E . D.

N.B. A' is a different quantity from A, B' from B, *c,

EXAMPLES.

(1) Find a common divisor, independent of the letter a, of die two quantities

6 a ca2+6*a c^a+i
3 S&c+c

2 and

fra* 36*z3
4-3&c

ja3 fcP+fra* c*ai+b3a <?a+& Sto+S&c8 c3.

Collecting together in the first of these two quantities the multipliers of a1 and

a, and observing that 5s 2bc-\-c* is the square of b c, we have

(b )a
s+ (b

3
d>)a+ (6 c)

3
,

and from the second by a similar process,

(b c)'a
3
+(6* c^a'-H*

3 c3)a+(6 c)
3
.

The multipliers of the different powers of a in the two quantities are, there-

fore, b c, b' c-, (b c)
3
, (b c)

3
, b4 c4, and b3 c3. The only number

which will divide them all is their common divisor 6 c, which is, therefore,

the answer required.

(2) Find the greatest common divisor of

(b c )a* 26 (b
_c)a+6*(& c) and

Here the common divisor, independent of a, is 6 c; suppressing which, we
have left the two quantities

a* 26a +6* and

.(b +c)(a*-6->
Suppressing the factor (6+c) not common to both, we shall find the common
divisor of these last two quantities to be a 6, and the greatest common
divisor of the two original quantities is

(b c) (a b) or ab ac b*-{-bc.

The success of the process for finding a greatest common divisor depends upon the fact

that the quantities being arranged according to the powers of some letter, each division

leads to a remainder of a degree inferior to the divisor. When die polynomials contain

many terms of the same degree, a precaution is necessary, without which this reduction

would not always obtain, which consists in uniting all these terms under a single multiplier
Let there be the two polynomials :

1 write them thus :

The first term, x3
, not being divisible by (y-f-l)j, on account of the factor y-f-1, I know

(Prop, above), that if a quantity is arranged like the preceding, every divisor of this quantity.

independent of x, must divide separately the multiplier of each power of x. From this it

follows that y-\-\ has no common factor with B, because, if it had, this factor would be
>und in y?-\-y-\-i and in y ; but it is evident that y has no factor common with y-f-l.
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We can then multiply A by y-}-\ without affecting the common divisor sought ; and as

it would be necessary to multiply again by y-\-l, we multiply at once by (y+1) 2
, or

y2-\-2y-\-\* In this manner we arrive at the remainder

B.=( y* y*+y*}xy6
y*+y*.

Before passing to the second division, it is necessary to suppress in B, the factors com-

mon to the multipliers of the powers of x. But the two parts of B are evidently divisible

by y* y^-^yt, and after this simplification there remains x-\-y. We can then take

x-\-y for a divisor, and as the division is effected exactly, it follows that the common di-

visor sought is x-\-y.

The process is not always so easy. To develop the general method to be pursued in

such cases, let us consider the polynomials A and B, which contain two letters, x and y.

Take first the greatest monomial common divisor of the terms of A ; let a be this divisor,

and A' the quotient of A by a: we shall have A=aA'. Arrange A according to the pow-
ers of x, taking care to collect all the terms containing a same power of this letter, and let

us suppose, for example, that we have

All the factors of A', independent of a;, must be factors of the quantities L, M, N, which

multiply the different powers of x. These quantities containing only the single letter y, it

will be easy to find their greatest common divisor; let us name this divisor a', and the

quotient of A! by a', A"; we shall have A'=a'A", and, consequently,

A=aa?A".
a will be the product of the monomial factors of A, a' the product of the polynomial fac-

tors which do not contain x, and A" the product of the factors which contain x.

Let us effect the same decomposition of the polynomial B, and let

B=,3/?'B".
Then I determine the greatest common divisor of the monomials a and /?, as well as that

of the polynomials a' and (3', which contain only the letter y ; and if I can also find that

of the polynomials A" and B", which contain y and x, I shall have three quantities, the

product of which will be the greatest common divisor of A and B.

But I say that we can find the greatest common divisor of the quantities A" and B", in

subjecting them to the same calculus as the preceding examples. It is clear, indeed, that,

these quantities having no longer either monomial factors or polynomial independent of x,

it will be proper to multiply the partial dividends of the first division by the polynomial
which is placed before the highest power of a; in the divisor, and that we shall thus arrive

at a remainder of a degree less in x than the divisor. It will be easy to take from this re-

mainder all the monomial factors which it contains, as well as the polynomial factors inde-

pendent of x, and then proceed to a second division, taking for a divisor this remainder sim-

plified. We operate as in the first; then we pass to the third, and continuing always in

this manner, we are sure of arriving finally at a remainder zero, or independent of x.

In the first case the quantities A" and B" have, for greatest common divisor, the divisor

of the last division.

We have thus seen that the finding of a common divisor, when the polynomials contain

two letters, depends upon finding it when they contain one ; so the case where they con-

tain three depends upon that where they contain two, and so on, whatever be the number
of letters.

There is, therefore, no case in which the common divisor can not be found by the above

rules.

THE LEAST COMMON MULTIPLE.

32. We have already defined a multiple of a quantity to be any quantity

that contains it exactly ; and a common multiple of two or more quantities is a

quantity that contains each of them exactly.
* Let N be the dividend, D the divisor, c the coefficient of the first term of the divisor.

Multiplying by the square of this coefficient, the dividend becomes C2N. The first term of

the quotient will contain the first power of c. Multiplying the whole divisor by this term

of the quotient, every term of the product will contain the first power of c, and the whole

product may be represented by cP. Subtracting this from the dividend, the remainder is

C2N cP, every term of which contains c, and, therefore, its first term is ready for division

without multiplying again by c.
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The least common multiple, of two or more quantities, is, therefore, the least

quantity that contains each of them exactly.

X. B. The least common multiple must, from its nature, contain all the dis-

tinct factors in either of the quantities.

33. Tofind the least common multiple of two quantities.

(1) Divide the product of the two proposed quantities by their greatest com-
mon measure, and the quotient is the least common multiple of these quanti-
ties ; or divide one of the quantities by their greatest common measure, and

multiply the quotient by the other.

Let a and b be two quantities, d their greatest common measure, and m
their least common multiple ; then let

a=hd, and b=kd ;

and since d is the greatest common measure, h and k can have no common
factor, and hence then' least common multiple is hk ; therefore, hkd is the
least common multiple of hd and kd ; hence,

hkd3 hdxkd axb ab
m=hkd=-d-=d=-d-=-d Q- E - D -

(2) Also, the least common multiple is composed of the highest powers of all

the factors which enter into the given quantities.*

EXAMPLES.

(1) Find the least common multiple of 2a*x and Sa3!3.

ab 2a-xx8a3x?
Here

m=-^-=
- -=8a?x3= least common multiple ;

or, by (2), the two quantities being 2a2x and 23a3z3, 2
3a3x3 is the I. c. m. ; be-

cause 23 is the highest power of 2, a3 the highest power of a, and x3 the

highest power of x, in either of the given quantities.

(2) Find the least common multiple of 4x2
(x

2
y~) and 12xs(x

3
y
3
).

Here d=4x*(x y), and, therefore, we have

ab

or, m
or, the two given quantities being 22

ar
2
(z-j-2/)(ar y) and y.3x3

(x y)(x*-\-xy
+#3

),
the I. c. m. is 2* .3x*(x+y)(x 2/)(a^-fry+ya

).

(3) Find the least common multiple of x3-\-2xy-\-y- and x3 xy*.
Here d=x-\-y, and, therefore, we get

a ,

= (x+y) (*-xf)
=x(x-}-y) (x

9
y*)= least common multiple

or, the two given quantities being (ar-fy)
2 and x(x+y) (xy), the I. c. m. is

x(x+yy(x-y).
(4) What is the least common multiple of x4 5r5

+9:r
3

7x-|-2, and
r1

6r-+8j 3?

By the process for finding the greatest common measure, we find

d=x3

* 7x+2,

= (x 2) (x* Ga^-fSx 3)

=i5 2ar6z3+20r3
19X+6, the least common multiple.

* The ordinary arithmetic method depends on this principle.

F
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(5) Find the least common multiple of a2 2a&+ & 2 and a4 b*.

(6) Find the least common multiple of a2 i2 and a3
-{-b

3
.

(7) Find the least common multiple of z2
y* and 3? y

3
.

(8) Find the least common multiple of y- 8y-{-7 and y*

(5) (a-b) (*-&).
(6) (a b) (a

3+&3
).

ANSWERS.

(7) (x+y) (x*-y
3
).

(8) 2,
3
_57i/+56.

34. Every common multiple of two quantities, a and b, is a multiple of in,

common multiple.

For let m' be a common multiple of a and b, then, because m' is greater

than m, if we suppose that m' is not a multiple of m, we have, as in the an-

nexed scheme,

m) m' (h

m'=hm+k ... (1)
hm

m'hmk ... (2)
k= remainder.

Now the remainder k is always less than m the divisor ; hence, since a and

b measure m and m', it is evident that a and b measure m' hm, or, by (2), k ;

therefore, k is a common multiple of a and b, and it has been proved to be less

than m, the least common multiple, which is absurd ; hence the supposition

that m' is not a multiple of m is false, or m' is a multiple of m.

35. To find the least common multiple of three or more quantities

Let a, b, c, d, &c., be the proposed quantities ;

find m, the least common multiple of a and b ;

find m', c and m ;

find m", d and m' ; &c.

The last, say m", is evidently a multiple of a, b, c, d, &c.

Then, since every multiple of a and b is a multiple of m, their least common

multiple (34), the quantity sought, x, is a multiple of m ; but x also is by hy-

pothesis a multiple of c ; therefore, a: is a multiple of both c and m, and, there-

fore, it is (34) a multiple of m' ; but a; is a multiple of d and m', and, therefore,

of m" ; hence x can not be less than m", and, therefore, m" is the least com-

mon multiple.

EXAMPLES.

(1) Find the least common multiple of 2a2
, 4a

362
,
and 6a&3

.

Here, taking 2a2 and 4a362 , we find <=2a2
, and, therefore,

ab 2a2 X 4a352

m= r= ^-7;

Again, taking m, or 4a362
, and 6ab3

, we find J=2a63
;
hence

cm 6ab3 X 4a362

m'=-r= r-rj =12a363= answer required.

Or, the three given quantities being 2a2
, 22a362

, and 2. 3ab3
, the 1. c. m.,

33 . (2), is 22
. 3a363 .

(2) Find the least common multiple of a x, a2 x2 , and a3 Xs
.

Taking a x and a2 x2
, we have d=a x; and hence

ab a x
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Again, taking a2 z2 and a3 x3, we find d=a x; hence

m = (a
3-z3)= answer sought.

u ~~~X

Or, the three given quantities being (a x), (a x)(a-|-x), and (a x)(a
2
-fax

-f-x
2
),

the least common multiple is (a x)(a-j-x)(a
3
-j-az+z-).

(3) Find the least common multiple of 15a252 , l'2a, and 6a36.

(4) Find the least common multiple of 6a3z2
(a x), 8z3(a

2
ar
2
),

and 1-J

(5) Find the least common multiple of z3 x*y xy
3+y\ tf

and x4 y
4
.

(6) Find the least common multiple of (a+fe)
3
, (a

3
fc
2
), (a &)

2
, and a :

(7) Find the least common multiple of 45, 50, and 75, or 3*. 5, 2.52
, and

3.53
.

ANSWERS.

(3) 60a3
Z>
3

.

(4) 24a*z(a z)(a
2

(5) x5 zy
4

(6) (a

(7) 33
. 2 . 52=450.

OF ALGEBRAIC FRACTIONS.

36. ALGEBRAIC fractions differ hi no respect from arithmetical fractions, and

all the rules for the latter apply equally to the former. We shall, therefore,

merely repeat the rules, adding a few examples of the application of each. It

may be proper to remind the reader that all operations with regard to frac-

tions are founded upon the three following principles :

1. In order to multiply a fraction by any number, we must multiply the

numerator, or divide the denominator of the fraction by that number.

2. In order to divide a fraction by any number, we must divide the numera-

tor, or multiply the denominator of thefraction by that number.

3. The value of a fraction is not changed, if we multiply or divideJbofh thr

numerator and denominator by the same number. See (17, Note).

REDUCTION OF FRACTIONS.

I. To reduce afraction to its lowest terms.

37. RULE. Divide both numerator and denominator by their greatest com-

mon measure, and the result will be thefraction in its lowest terms.

When the numerator and denominator are, one or both of them, monomials,

their greatest common factor is immediately detected by inspection ; thus

a26c a26 x c c

3,3= n- ^T=T in its lowest terms.

So, also,

-=
;

in its lowest terms.
ax-|-x

2
x(a-j-x) a-|-x

If, however, both numerator and denominator are polynomials., we must
have recourse to the method of finding the greatest common measure of two

algebraic quantities, developed in a former article. Thus, let it be required to

reduce the following fraction to its lowest terms :
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6a3

12a2
15ay -\-3if

'

The greatest common measure of the two terms of this fraction was found at

page 37 to be a y ; therefore, dividing both numerator and denominator by
this quantity, we obtain as our result the fraction in its lowest terms ; or,

I2a3y
'

. . v . 4a4 4a2
Z>
2+4a&3 b*

In like manner, taking the fraction---L-
, the greatest

<_- 3 23 * *

common measure of the two terms is found to be 2a2+2ai 62 ; and, dividing

both numerator and denominator by this quantity, the reduced fraction is

2ag
2a6-t- 6*

3a2 ab2b*'

EXAMPLES FOR PRACTICE.

^x5_ I6x_6

(1) Reduce to its lowest terms.
3Z3 -24a.- 9

48.r3+36:e
2 15

(2) Reduce ;
-

,
-- to its lowest terms.

24r3 2lx2
-\-lQx 6

(3) Reduce
, ,
-- to its lowest temis.

25x4
-\-5x

3 x 1

^,.i-n m?p 6m /

n?-\-2mnp
(4) Reduce -77; -7-3 to its lowest terms.

12mn 1on? 4mp -\-bnp

Ans.

^ _*j A _i J_ I r4 _oJ.-_ r 4 _o7. J I *** Z.o,

(5) Reduce

to its lowest terms. Ans. ;
4

38. It frequently happens, however, that when the polynomials which form

the numerator and denominator of a fraction which can be decomposed are not

very complicated, we are enabled by a little practice to detect the common
factor and effect the reduction without performing the operation of finding the

greatest common measure, which is generally a tedious process. The results

to which we called the attention of the reader at the end of algebraic division

(see page 30) will be found particularly useful in simplifications of this nature.

Thus, for example :

2

tey(x+y) 3xy(*+y) *y

(7 ) a2 2a&+62
~

(a t)
2 ~ab'

5a(a+6)
2

5(a+b)
8a

a2
2ax4-.r

2= (axf a x

ac+bd+ad+bc _ (
a+b)c+(a+ b)d _ (c+d)(a+b)

af+2bx+2ax+bf-
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6ac+ 10&C+3ad+ 15bd_3a(2c+ 3</)+56(2c+ 3J)

2c 3<2
= ~

3c 1

xa(a bx) xm(abx)
aibxb3

3?~-bx(a-b-x*)~bx(a+bx)(abx)~b(a+bx)'

(14)
8cr+ 12cy Wdx I5dy~4c od'

II. To reduce a mixed quantity to an improperfraction.

39. ROLE. Multiply the integral part by the denominator of the fraction,

and to the product add the numerator with its proper sign ; then the result

placed over the denominator will give the improperfraction required. Thus,

a8 z* a2 a^as Is

a*+x*

abc+c'
id+2abd+2cd-4-abcc*d-2c</-

3 a2 2&c63 cs a3

40. It is to be remarked that when a fraction has the sign , it signifies

that the whole fraction is to be subtracted ; the negative sign, therefore, as

will be shown hereafter, applies to the numerator alone ; when the nqpierator

is a polynomial, the negative sign extends to all its terms ; the bar which sepa-
rates the numerator from the denominator is to be regarded as a vinculum, and
if it have the negative sign before it, when removed, all the signs of the numer-
ator must be changed.

6 ab
(5) 1 =-.

_

ef cdef
i^-^'

2ab

rf+fr-

i

'

26c
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(9)

x34- 3x"y+ ?>xf+y
3

(a-
3

33?y+ 3xf~ y
3
)

M-y
_ 2pqn m?n mpq4-mri* npq (2m2 2

(10) mnpq r~^~= -!=
T

' "

m-^n m-\-n
m?n mpq mn^-\-pqn

mn(m n) pq(m n)

m-\-n

(mn pq)(m n)

m-\-n*

III. To reverse this process, or to reduce an improper fraction to a mixed

quantity.

RULE. Divide the numerator by the denominator ; the quotient obtained as

far as practicable, will be the entire part, and the remainder, set over the de-

nominator, will be the fractional part. Then the twn, joined together with the

proper sign, willform the mixed quantity required. Thus,

ay-}-b b

(11) =a-\--.
y ^y

(12)

"24~ r2

(13)

a x

20r>

(14) p+q p+q
3

IV. To reduce fractions to others equivalent, and having a common denomi-

nator.

41. RULE. Multiply each of the numerators, separately, into all the denomi-

nators, except its own, for the new numerators, and all the denominators to-

getherfor a common denominator.^

a c

Thus, reduce
j-
and -5 to equivalent fractions having a common denominator

a X d is the new numerator of the first,

c X b is the new numerator of the second,

6 X d is the common denominator ;

ad be
Therefore, the fractions required are rf and T~?-___bd_oa_

* The rationale of the above examples is given in the note on the next page.

t The numerator and denominator of each fraction will thus be multiplied by the same

number, viz., the product of the other denominators, and, consequently, its value will be un-

changed.
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a c e g k m
Reduce -r, ~5 ~r> T> T>

~~ to a common denominator.
6 a J hi n

adfhln elfkin ebdhln ebdfln Jcbdfhn mbdfhl , ,. .J J _, s i
,--L ,--L

, are the tractions reauired.

bdfhln bdfhln bdfhln bdfhln bdfhln bdfhln
14-x l-l-z3 14-ar8

Reduce
~

,
31

,
-JL

, to a common denominator.
1 x \& 1 r1

^)
'

fractions required.

ADDITION OF FRACTIONS.

42. RULE. Reduce the fractions to a common denominator, add the numera-

tors together, and subscribe the common denominator. Thus,
a c ad be ad-{-bcW
~o
+d

==
~od+bd~ bd

'

_L 4 + _ . ,

b n q y bnqy~*~ bnqy bnqy'bnqy
anqy -\-mbqy-\-pbny-\-zbnq

bnqy

e adfx
5

cbfx
4 ebdz?

adfj?+ bcfr*+ Idut?~

i-r* i-a?
:

'

bdfi*

(i+^y

*

1 x*
'

1 X 1+X

(l z)

1 T-r-1+3:

~1 Xs
*

SUBTRACTION OF FRACTIONS.
43. RVTLE. Reduce the fractions to a common denominator, subtract the

numerator or the sum of the numerators of the fractions to be subtracted,from
the numerator or the sum of the numerators of the others, and subscribe the com-
mon denominator.*

. . a ad be ad be
( ' l~d=~bd~bd~ bd

'

(2)
-_i- /P.^^anqymbqy^pbny^xbnqb n \q y/ bnqy

'

bnqy bnqy bnqy

anqy -}-mbqy pbny xbnq~
bnqy

'

* The rules for addition and subtraction ol fractions follow from the general principle that

quantities to be added or subtracted must be of the same denomination.
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a c e g adfhx
5

bcfhx
8 bedhx7

bdfgx
5

( ' + ~~
adfhx

3
-\-bcfhx* bedhx bdfg

bdfhx*
'

a+b a-b_(a+b)*-(a-1>)*
a b a-\-b (a-\-b)(a b)

=
a?b*'

(1--. _
I ) 1 ^~lz2= l 3

(6)J_ 1 a"- 1
I U I

~~ _
v

'. am
~n am am

Or bsd <z
2
Z
r"*"3 b sd

/7\

44. When the denominators of the fractions which it is required to reduce

have a common multiple less than their continued product, the result will fre-

quently be much simplified by finding this least common multiple, and then

reducing the fractions to their least common denominator by multiplying the

numerator and denominator of each fraction by the quotient of the least com-
mon multiple, divided by the denominator of that fraction.

Thus, if we are required to reduce the following fractions :

a 3x 3a 5x 3a 5x

~4~+ 5 ' 20
'

The least common multiple of 4 and 5 is 20, the denominator of the third

fraction ; therefore the fractions, when reduced to their least common denomi-

nator, are

balbx 12a 20.r 3a 5x 5a 15r-f-12a 20.r-}-3a 5x

20 ~*~ 20 + 20
=~

20

20a 40;r

So, also, in

27 9x 5.r+2 61 2.r+5 29+4a: 537x
*+ ~

~~6 12"*"~~3~~^ 12~ 12
'

the least common multiple of 3, 4, 6 is 12, which will be the least common de-

nominator, and the above fractions become

12:r 81
27a:^10a:+4

61 83:+ 20 29-f-4.r 5 37a:

12"+ 12 12 ~12+~~l2 I" 12 12
'

Or,

27a: lOx 4

12
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' MULTIPLICATION OF FRACTIONS.

45. RULE. Multiply all the numerators together for a new numerator, ami

all the denominators togetherfor a new denominator. Thus,*

a c ac

(1 > b
X d
=

bd'

a m p x ampx
'*) b

X n X 'q

X
y
=

bnqy'

a+b e-f k+l p-q (a+1>)(e-f)(k+l)(p-q)
') c+d

X
g-h

Xm-n X r+s-(c+d)(g-h)(m-n)(r+8y

a b c d e abcde a

DIVISION OF FRACTIONS.

46. RULE. Invert the divisor and proceed as in Multiplication. f

a c a d ad c ad acd a
+" =x ~=~- Proof' x==~'

c+d
' g-h-c+d e-f-(c+d)(e-fY

1+ 3? 1-3? 1+ 3? 1+J3 (1+Z3

)

3

( > lX3 '

x*b* xb_xb =
x*2bx+b*x2+bx

(xb)*.x.(x+b)

x(zb)(xb)(x+b)

47. Miscellaneous Examples in the operations performed in Algebraic Frac-

tions.

3a 5x_
4fe""8e~7i/~" 56bey

2a_ bdf deg 16abc+15cdf4deg~

/

a c rf a cx-\-dxr+s
(A\ --- I---1_
V /

.j-n -j-n iT^^-n r s~~'

,-n

* To multiply a quantity by the fraction , for instance, is to take it as many times as is

expressed by this multiplier, that is, two thirds of a time, or to take two thirds of it,

which is done by dividing it by 3, and multiplying by 2. If the multiplicand be a fraction,

this is done, as has been before shown (17, Note), by multiplying its Dumerator by 2, and
its denominator by 3, which accords with the rule above eiven.

t This rule depends upon the principle that the divisor, multiplied by the quotient, mwt
produce the dividend.

D
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:

Z>
2c 5a&2

c-f a
3 2aZ>3 Z>c

2+3aic2 a3

(5) c+2a&-3ac ^-^-=-|^-
-

.

(6) + =-

13a 5& 7a2b 3a 89a 55&~~~ ~~

* '

5 60
'

3a4b 2abc 15a 4c 85a

2 84

acd 462 a

a5 ab b g?+ab*-\-b
3

>

3

4(1

z2
9X+20 J2

13x4-42, J2

'

'
a:
2 6x

X
x2 5z

=

a-j-r a x

a x+a+x a^

^ '

a x a+x
n 1

(19)
?

' n 1

(20)

n+1
a? a2

x4-ax
2 x3 a4 x4

x5~a6 x6

These examples admit of the application of the formulas at the top of page 30
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OX THE FORMATION OF POWERS, AND THE EXTRACTION
OF ROOTS OF ALGEBRAIC QUANTITIES.

48. WE begin by considering the case of monomials, and, in order to sim-

plify the subject as much as possible, we shall first treat of the formation of the

square and the extraction of the square root only, and then proceed to gener-
alize our reasonings in such a manner as to embrace powers and roots of any

degree whatsoever.

DEFINITION. The square root of any expression is that quantity which,
when multiplied by itself, will produce the proposed expression. Thus, the

square root of a3
is a, because a, when multiplied by itself, produces as

; the

square root of (a-j-fe)
3 is a-j-i, because a-}-b, when multiplied by itself, pro-

duces (a-\-b)
2

; in like manner, 8 is the square root of 64, 12 of 144, and so on.

The process of finding the square root of any quantity is called the extraction.

of the square root.

The extraction of the square root is indicated by prefixing the symbol -\/ to

the quantity whose root is required. Thus, i/a4 signifies that the square root

of a* is to be extracted ; *J a*-\-2ab-\-li*, or J (a*-\--2ab-\-l?), signifies that the

square root of a~-\-2ab-\-b
3 is to be extracted, &c.

In order to discover the method which we must pursue to extract the square
root of a monomial, let us consider in what manner we form its square. Ac

cording to the rule for the multiplication of monomials,

(5a?b
3
c)*=5a*b

3c X 5as63c=25o466c3.

So,

(9a<*d*y=9db*?d*X 9ab*cid4=8la3b<c5d8
.

'

And,

i. e., we add the exponent of each letter of the given monomial to itself.

49. Heace it appears that, in order to square a monomial, we must square
its coefficient, and multiply the exponents of each of the different letters by 2.

Therefore, in order to derive the square root of a monomial from its square,
we must,

I. Extract the square root of its coefficient according to the rules of Arith-

metic.

II. Divide each of the exponents by 2.

Thus, we shall have

This is manifestly the true result, for

(8a
3
b*)*=Sa?b'

i X 8asb*=64a?b4
.

Similarly,

Here, also,

(2

Again,

Also.
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Also,

If the given quantity be a fraction, extract the square root of its numerator

and denominator separately. This rule follows from that for multiplication

of fractions. Thus,

Also,

Also,

(a+ a:)^
1y~~

(a+ z) fry*'
Also,

r-x

50. It appears, from the preceding rule, that a monomial can not be the squaic

of another monomial unless its coefficient be a square number, and the exponents

of the different letters all even numbers. Thus, 98ab4 is not a perfect square,

for 98 is not a square number, and the exponent of a is not an even number.

In this case we introduce the quantity into our calculations affected with the

sign V', and it is written under the form ifSQab*. Expressions of this nature

are called Surds, or Radicals of the Second Degree.*
51. Such expressions can frequently be simplified by the application of the

following principle : The square root of the product of two or more factors is

equal to the product of the square roots of these factors. Or, in algebraic Ian

guage,

In order to demonstrate this principle, let us remark that, according to our

definition of the square root of any expression, we have

Again

=abcd ..... .

Hence, since the squares of the quantities ^/abcd ----- , and / V&
\fc. V'd are equal, the quantities themselves must be equal.

This being established, the expression given above, \/98a6
4
, may be put

under the form -v/49i
4X2= V4964 X V~2a, but -/496

4 is by (Art. 49) =7&2
;

hence

Similarly,

* From the Latin surdus. They are sometimes called incommensurable, having no com-

mon measure with unity. They are also called irrational, because their ratio with unity

can not be expressed in numbers. Fractions have both a common measure and ratio with

unity. Thus the fraction f hat i for a common measure with unity, and its ratio with uni-

ty is f. t This follows from (10, III., note).
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So, also,

:= Vl44a-i4c10X

Also,

Also.

Also,

Also,

Also,

2a

In general, therefore, in order to simplify a monomial radical of the second

degree, separate thosefactors which are perfect squares, extract their root (Art.

49), place the product of all these roots before the radical sign, and place all

thosefactors u-hich are not perfect squares under the radical sign.

In the expressions, 7&3 -/2a, 3abc-\/obd, ISab-c5 V'6bc, &c., the quantities

7b3
, 3abc, ISa&c5, are called the coefficients of the radical.

52. We have not hitherto considered the sign with which the radical may
be affected. But since, as will be seen hereafter, in the solution of problems
we are led to consider monomials affected with the sign , as well as the

sign 4-5 it is necessary that we should know how to treat such quantities.

Now the square of a monomial being the product of the monomial by itself, it

necessarily follows that, whatever may be the sign of a monomial, its square

must be affected with the sign -4-. Thus, the square of -{-oa-b
3
, or of 5a-fe3,

is -4-25o456.

Hence we conclude that, if a monomial be positive, its square root may be

either positive or negative. Thus, -\/9a
4
=-\-3a

2
, or 3a2

, for either of these

quantities, when multiplied by itself, produces 9a4
; we therefore always affect

the square root of a quantity with the double sign i , which is called plus or

minus. Thus, i/9a*=3a*, V 144a-i4c6= 12a&2c3.

53. If the monomial be affected with a negative sign, the extraction of its

square root is impossible, since we have just seen that the square of every

quantity, whether positive or negative, is essentially positive. Thus, -y/ 9,

* The double sign may be omitted, being always understood before i/- An important

proposition, not usually noticed, should be demonstrated here ; it is, thaf the quantity A has

no other square root than the two, -}-\/A. and \/A. To prove this, let us observe that

the different square roots of A are the values of a; in the equation x8=A, or what is the

same,

x? A=0.

Instead of aft A, we may write a? (V'-^-)
2

! then, decomposing this difference into two

factors, we have

Under this form we perceive that every value of x which is not either -\-\/A or \/A.,

win fail to render either of these two factors zero
; then it will not render the product& A

zero ; therefore the quantity A has no other square root than -^--\/A.

The square root of a quantity has, therefore, two values, which, are equal vith contrary

signs, and it has no otJier values.
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V 4a2
, -y/ 5, are algebraic symbols which represent operations which it is

impossible to execute. Quantities of this nature are called imaginary or im-

possible quantities, and are symbols of absurdity which we frequently meet

with in resolving quadratic equations.

By an extension of our principles, however, we perform the same opera

tions upon quantities of this nature as upon ordinary surds. Thus, by (Art

_ _
^9 = -/9X 1 = -y/9". V i =3 V

V 4a2 = V4a2 X 1 = V^ V^l _ _
V 8a26= -/2 X 4a2 X & X 1= V^ X -/2&X V l=2a -/2& V
54. Let us now proceed to consider the formation of powers and extraction

of roots of any. degree in monomial algebraic quantities.

DEFINITION. The cube root of any expression is that quantity which, mul

tiplied twice by itself, or taken three times as a factor, will produce the pro

posed expression. The fourth, or biquadrate, root of any expression is that

quantity which, multiplied three times by itself, or taken four times as a fac

tor, will produce the proposed expression ; and in general, the nth root of any

expression is that quantity which, multiplied (n 1) times by itself, or taken

n times as a factor, will produce the proposed expression. Thus, the cube

root of a?b3 is ab, because ab, multiplied by itself twice, or taken three times

as a factor, produces a3
Z>
3

; for the same reason, (a+b) is the 6th root of

(a-f-^)
6
> 2 is the seventh root of 128, and so on.

55. Let it be required to form the fifth power of 2a3
Z>
2

.

(2a
362

)

5=2a3
Z>
2 X 2a362 X 2a362 X 2a3

Z>
2 X 2a362

=32a16&10
.

Where we perceive, 1. That the coefficient has been raised to the fifth

power; 2. That the exponent of each of the letters has been multiplied by 5

In like manner,

(8a
26sc)

3=8a2
Z>
3c X 8a2

Z>
3e X 8a2

Z>
3c

_ 83a2+2+2&3+3+3cl+l+l

=512as&9c3 .

So, also,

(2ab*c
i

d*)
n=2ab-c>d*x2ab'ic3d4 X ..... to n factors

=2"an
fc
2nc3nd4n

.

Hence we deduce the following general

RULE TO RAISE A MONOMIAL TO ANT POWER.

Raise the numerical coefficient to the given power, and multiply the exponents

of each of the letters by the index of the power required.*

And hence, reciprocally, we obtain a

RULE TO EXTRACT THE ROOT, OF ANT DEGREE, OF A MONOMIAL.

1. Extract the root of the numerical coefficient according to the rules of

arithmetic.

2. Divide the exponent of each letter by the index of the required root.

Thus,

V 1 6a8

* When a quantity is positive, all its powers are positive ;
but if it is negative, all its

even powers will be positive, and its uneven negative.
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EXAMPLES.

(1) (2a6c)
8=32o5i5c6.

/4\ I- ^ J
.-

V / \ ~n p+l / 2TO 7P+7

i

2
^ cos'0 sin^ coso

sec6^ tan2^ sec3!/;'

s /V
When the root to be extracted is of an uneven degree, its sign should be that

of the given quantity ; when oFan even degree, it should be Jt . (See last note.)

56. By the rule for extracting a root, \ve perceive that, in order that a

monomial may be a perfect power of that degree whose root is required, its

coefficient must be a perfect power of that degree, and the exponent of each

letter must be divisible by the index of the root.

When the monomial whose root is required is not a perfect power of the re-

quired degree, we can only indicate the operation by placing the radical sign

-/ before the quantity, and writing within it the index of the root. Thus,
if it be required to extract the cube root of 4a:6 5

, the operation will be indi-

cated by writing the expression,

Expressions of this nature are called surds, or, irrational quantities, or radi-

cals of the second, third, or nrt
degree, according to the index of the root re-

quired.

57. We can frequently simplify these quantities by the application of the

following principle, which is merely an extension of that already proved in

(Art. 51).
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The ntb root of the product of any number of factors is equal to the product

of the n'
A roots of the different factors. Or, in algebraic language,

Raise each of these expressions to the power of the degree n, then

-----
)

a=abcd ..... .

And,
'

Vex V"^---)
n=(V)
=abcd ---- .

Hence, since the nlh
powers of the quantities V abed, and \/a. V^-V C -

y d ---- are equal, the quantities themselves must be equal. Q. E. D.

This being established, let us take the expression V54 463c? , whose root

can not be exactly extracted, since 54 is not a perfect cube, and the exponents

of a and c are not exactly divisible by 3.

We have,

(1)

by the principle just proved,

So, also,

(8)
v m

In the above expressions, the quantities 3a6, 2a&3
c, 2ac3, &c., placed before

the radical sign, are called the coefficients of the radical.

58. There is another principle which can frequently be employed with ad-

vantage in treating these quantities ; this is,

The m'A
power of the n'

A
power ofany quantity is equal to the mn"' power of

that quantity. Or, in algebraic language,

* A good way of separating a number into factors, some of which are perfect powers, is

to try perfect powers upon it as divisors, beginning with powers of the lowest numbers.

Thus, in the 4th example, 8, the cube of 2, will divide 192, and the quotient is 24
; again, 8

will divide 24, and the original number, 192, may be put under the form 8X8X3=64X3,
and the cube root will be 2X2X v/3, or 4^3. The cube root

of_1080jnay be foundry first

dividing by 2^, and that quotient by 3", or 27. The result is ty&X 3^X 5=2X 3 S/5=G ty5
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For we have,

And, in general,

{a
n
}

m=an XanXan Xan ---tom factors;
n+ n-f n+n to* terms .

And, reciprocally,

The mnrt root of any quantity is equal to the mrt root of the nrt root of that

quantity. Or, in algebraic language,

For, let

Raise the two quantities to the power TO,

y^=pm ;

Again, raise both to the power n,

a=p;
Extract the mrf* root,

m
V~a=p ;

But, by supposition,

Hence, as often as the index of the root is a number composed of two or

more factors, we may obtain the root required by extracting, in succession,

the roots whose indices are the factors of that number. Thus,

(1)

=:? / V4a2
by the above principle,

(5) ^ 1ea^y2" 1^"-4= V 4a-

(6) In general,

= 1/0".

That is to say, When the index of the radical is multiplied by a certain

number n, and the quantity under the radical sign is an exact n'
A
power, we

can, without changing the value of the radical, divide its index by n, and ex-

tract the n'
A root of the quantity under the sign.
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Thus,

59. This last proposition is the converse of another not less important,

which consists in this, that we may multiply the index of a radical by any num-

ber, provided we raise the quantity under the sign to the power whose degree is

marked by that number, or, in algebraic language,

Va=mVo.
For, if the last rule be applied to the second of these quantities, it will pro-

duce the first.

60. By aid of this last principle, we can always reduce two or more radi-

cals of different degrees to others which shall have the same index. Let it be

required, for example, to reduce the two radicals ty2a and %/3bc to others

which shall be equivalent, and have the same index. If we multiply 3, the

index of the first, by 5, the index of the second, and, at the same time, raise

2a to the 5th power; if, in like manner, we multiply 5, the index of the

second, by 3, the index of the first, and, at the same time, raise 3bc to the 3d

power, we shall not change the value of the two radicals, which will thus

become

We shall thus have the following general

RULE.

In order to reduce two or more radicals to others which shall be equivalent

and have the same index, multiply the index of each radical by the product of
the indices of all the others, and raise the quantity under the sign to the powei
whose degree is marked by that product.

Thus, let it be required to reduce -\/2a, $/3b*c
3
, %/4d

4e&f6 to the same

index,

The above rule, which bears a great analogy to that given for the reduction

of fractions to a common denominator, is susceptible of the same modifications.

RULE.

To reduce radicals to their least common index, find the least common multi-

ple of all the indices, divide it by the index of each radical, and raise the

quantity under the radical to the power expressed by the quotient.*

This rule, applied to the radicals I/a, fy5b, %/2c,

EXAMPLES.

(1) Reduce 'ty
am

, V&", and \/CP to the same index.

(2) Reduce '^a, ^/b, and V c to the same index.

(3) Reduce ^/a
5
, fyb*, Vcs

, and V^z to the same index.

* This is, in effect, multiplying the index of each radical, and the exponents under that

radical, by the quotient.
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(4) Reduce y~, A/T~'
an^ v

~~ to t^ie sa

(5) Reduce -J _,. . , and $/-
5
to the same index.

61. Let us now proceed to execute upon radicals the fundamental opera-

tions of arithmetic.

ADDITION AND SUBTRACTION OF RADICALS.

DEFINITION. Radicals are said to be similar when they have the same in-

dex, and when, also, the quantity under the radical sign is the same in each ;

thus, 3i/a, l'2ac-\/a, lobi/a, are similar radicals, as are, also, taPbjfmaPjP.

p3
, &c.

This being premised, in order to add or subtract two similar radicals we
have the following

RULE.

Add or subtract their coefficients, and place the sum or difference as a coeffi-

cient before the common radical. For example,

(1) 3^+2^1=54/6.
(2) 3^62^6=^.
(3) 3^V^+4ZVwn=(3pH-4Z)V'nn.
(4) deduct 4cd*</a=5cdi/a.
If the radicals are not similar, we can only indicate the addition or subtrac-

tion by interposing the signs -f- or .

It frequently happens that two radicals, which do not at first appear similar,

nay become so by simplification ; thus,

(5) V48a&*-}-5 -y75a= -/x 16 X a X b*+b -/3 X 25 X a

(6) 2 V45 3 -v/5=2 V> X 9

(7) y8a

* When two products, consisting each of several factors, have any common factors, the

other factors may be regarded as the coefficients of these, since they show how manv times

the common factors are repeated, and the addition may be performed by adding the coeffi-

cients, and annexing the common factors to the sum ; thus, abcd-\-mncd=(ab-\-mri)cd, and

5ab\/x-{-4cb-\/x=(5a-}-4c)b\/x, on the same principle as 8-{-4a=12ff.
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(8)

(9) V8+ V50 /18=4-/2.
(10)

(11)

(12)

(13)

(14)

MULTIPLICATION AND DIVISION OF RADICALS.

62. In the first place, with regard to radicals which have the same index,

let it be required to multiply or divide \fa by tyb, then we shall bve

For, if we raise V G X V&> an(i V a &) each to the n th
power, we obtain the

same result, ab ; hence these two expressions are equal. The same principle

is demonstrated in (57).

V a, la a,

In like manner, and S IT-I when raised to the nlh power, give 7 : hence
Vb V6 b

the two expressions are equal. We shall thus have the following

RULE.

In order to multiply or divide two radicals which have the same index, mul-

tiply or divide the quantities under the sign by each other, and affect the result

with the common radical sign. If there be any coefficients, we commence by .

multiplying or dividing them separately. The latter part of this rule depends

upon the principles set forth and alluded to in 17, note ; the coefficients, or ra-

tional parts, and the radical parts being regarded as factors composing a product

(3) 2a VbcX 3i \/afcc X a \/2a=6a2

_

=6a3i2c-/2.

=5a Ib

c 2b\c'26V

/r\ "~ y " " zoa-0 invn

5ab* Vmri* 5a62Vmn

5am /I

~~~b~\n
* The numerator and denominator of each of the two fractions in this example are multi-

plied by its denominator. The denominator becomes thus a perfect square, and may be set

outside the radical sign.
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3 I**-** V a*-6*

(7)

(8) -/ax

(9)

(W) 4X2V3X 6/72=
(11)

(12)

(13) ^18X5,^4=10^9.
(14) i

(15) 2

_ _ _
(17) ( V 15+ V 12 V 21)4- V 3=2+ ^5- -/7.
If the radicals have not the same index, we must reduce them to others

having the same index, and then operate upon them as above ; thus,

(1) 3a V~6 X 56 V2^=

(2)

(8) A Vara X B 5" x C Vcr=

()

(10) c -/a
2

x--^ Va+*=c^(a ar*as

FORMATION OF POWERS AND EXTRACTION OF ROOTS OF RADICALS.

63.^Let it
be^ required to raise V<* to the nth power: then.

( Va)
n= V^X V~X ^a - - - to n factors,

= V n
, according to the rule for multiplication just established.

Hence we have the following
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RULE.

In order to raise a radical quantity to any given power, raise the quantity

under the sign to that power, and place over the result the radical sign with its

original index. If there be any coefficient, we must raise the coefficient sepa-

rately to the required power. Thus,

(1)

~"

=2a V~o*-

(2)

When the index of the radical is a multiple of the exponent of the power
which we wish to form, the operation may be simplified.

Let it be required, for example, to square $/2a ; we have seen (Art. 58) that

but in order to square this quantity, it is sufficient to sup-

press the first radical sign ; hence, ( 3/2a)$= i/2a. Again, let it be required

to raise
l

tyabc to the 5th power; now,
l

^/abc=^J -\/abc; but in order to raise

this quantity to the 5th power, it is sufficient to suppress the first radical sign

hence, ( tyabcf= i/abc, and, in general,

that is to say,

If the index of ike radical be divisible by the index of the required power, we

may divide the index of the radical by the index of the power, and leave the

quantity under the sign unchanged.*

64. With regard to the extraction of roots, either by virtue of the principle

established in (Art. 59), or by reversing the last rule, we shall manifestly have

the following

RULE.

In order to extract any root of a radical quantity, multiply the index of the

radical by the index of the root required, and leave the quantity under the sign

unchanged. If there be a coefficient, we must extract its root separately.

Thus,

If the quantity under the sign be a perfect power of the same degree as the

root required, we may simplify. Thus,

*
It may be well to note here that the even power of a radical of the second degree is

rational, and the uneven power irrational, the latter being formed by the multiplication of

the proposed radical by a rational quantity.
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(4) V v"8*
=
YV8tfi*

= V2a.

/C\ . / a /
' V V9a* V_V9a

that is, ?c may extract the root of the quantity under the radical sign.

MISCELLANEOUS EXAMPLES,

(1) V24+ -/54 V6=^

(2) A/12+ 2 vf27+ 3 Vr^+ 9 -/46=59 -y/3.

(3) V^l 2V27+ \/28+ 2 V63=8^/7 ty3.

(4) -/45C
3

-/80c
3+ V5aac=(a c)

(5)

(6) V

(8)

ysxav/^ ygg" c/
_

'>^ "^ysw/^ Id+scd

2ax

(11)

(12)

(14)

(15)

(16)

(17) V4X ^"3X ^"6= ^3981312

8 fa* vla3a
**

/a 6
/a+fc
vi8-

It is mmifest that, in general,V^o=
fiions is = /a.

; for, by (Art w), each of these expn*.
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65. Let us now inquire with what sign a monomial root is to be affected.

We have seen (Art. 52) that, whatever ^may be the sign of a monomial,

its square is always positive ; and it is evident that, in like manner, eveiy even

power must be positive, whatever may be the sign of the original monomial,

and that eveiy uneven power will be affected with the same sign as the original

monomial.

Thus, a, when raised to different powers in succession will give

a, -fa
2

, a3
, -fa

4
, a5

, +a6
, a7

, &c.

And -f a, in like manner, will give

_|_ a, _f a*, -fa
3
, -fa

4
, +a5

, +a6
, -fa

7
, &c.

In fact, every even power 2n may be considered as the square of the nth
power

or a2"= (a
n
)

2
, and must, therefore, be positive ; and, in like manner, every

power of an uneven degree (2w-f 1) may be considered as the product of the

2 tL
power by the original monomial, and must, therefore, have the same sign

with the monomial.

Hence it appears,

I. Tfiat every root of an uneven degree of a monomial quantity must be

affected with the same sign as the quantity itself. Thus,

2a; V 8a3= 2a; V 32a10
Z>
5= 2a2

Z>.

II. That every root of an even degree of a positive monomial may be affected

with the sign -f , or the sign , indifferently. Thus,

III. That every root of an even degree of a negative monomial is an impos-
sible root ; for no quantity can be found which, when raised to an even power,

can give a negative result. Thus, V > V c, . . . are symbols of opera-

tions which can not be performed, and are caDed impossible, or imaginary,

quantities, as V > V &> m (Art. 53).

66. The different rules which have been established for the calculation of

radicals are exact so long as we treat of absolute numbers; but are subject to

some modifications when we consider expressions or symbols which are

purely algebraical, such as the imaginary expressions just mentioned.

Let it be required, for example, to determine the product of / a by

/ a ; by the rule given in (Art. 62),

-/ax V a= V ax a

But -/-f a
2=dra> so that there is apparently a doubt as to the sign with

which a ought to be affected in order to answer the question. However, the

true result is a ; because, in general, in order to square -\/m, it is sufficient

to suppress the radical sign ; but / a X V a
'

IS tne same thing as
( V )

and, consequently, is equal to a.

Next, let it be required to determine the product of / a by \/ b; by
the rule (Art. 62)

* For farther example* of transformations, see Appendix.
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The true result, however, is -Jab, so long as we suppose the radicals

/ , V b to be each preceded by the sign -j- i f r ^e have, according

to (Art. 53),

Hence,

According to this principle, we shall find for the different powers of V
the following results :

-l )==-!

= ix-i

Since the four following powers wiD be found by multiplying -f- 1 by the

first, the second, the third, and the fourth, we shall again find for the four new

powers + V 1> 1 V 1? +1 ; so that all the powers of V 1 will

form a repeating cycle of four terms, being successively, \/ 1, 1, / 1,_
Finally, let it be required to determine the product of <y o- by ty b,

which, according to the rule, would be j/-\-ab. To determine the true result,

we must observe that

And .-.

VZ^x V-b= Vab . ( V-l).
But,

Hence.

V^^X V~b=
The above principles wffl enable the student to operate upon these quanti-

ties without embarrassment.

THEORY OF FRACTIONAL AND NEGATIVE EXPONENTS.
67. This is the proper place to explain a species of notation which is found

extremely useful in algebraic calculations.

* This may be expressed in its most general form thus, if n be any whole number :

(ay^l)*
1 =oX+l _=a*

(aT/ 1)4+l=a4n-HX _{_1/_1 a n+l
. ydi

3X / =
The first in the note corresponds to the last in the text, the second in the note to the first

in the text, and the third in the note to the second in the text.

E
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I. Let it be required to extract the nth root of a quantity such as am . We
have seen by (Art. 55) that, if m is a multiple of n, we must divide m, the

index of the power, by n, the index of the root required. But if m is not

divisible by n, in which case the extraction of the root is algebraically impos-

sible, we may agree to indicate that operation by indicating the division of the

exponents. We shall thus have

the expression a n
being understood to signify the n"1 root of am , by a conven-

tion founded upon the rule for the extraction of roots of monomial quantities.

According to this convention or definition, we shall have

4/a
2=J? ; Va7=a*.

It may be observed that the denominator of the fractional exponent is the

index of the radical, and the numerator the exponent of the quantity under the

radical.

II. Let it be required to divide am by a". According to the rule in (Art.

17), we must subtract the index of the divisor from the index of the dividend ;

so that

it is to be remarked, however, that here it is supposed that m > n. But if

m < n, in which case the division is algebraically impossible, we may agree to

indicate the division by the aid of a negative index equal to the excess of n

over m. Letp be the absolute difference of m and n, so that n=m-\-p ; we
shall then have

=.
a 1

But jr may also be put under the form
, by suppressing the factor a

common to both terms of the fraction ; we shall then have

1

The expression a~f is then the symbol of a division which can not be executed ;

and the true value of the expression is unity divided by the same letter a

affected with the exponent p, taken positively. According to this convention,

we shall have

-.=!. 0-7=1, &..

Again, by supposing the exponent of the numerator to be larger by p than

the exponent of the denominator, it may be proved in a similar manner that

1
<ZP=-.

arf

From these expressions it appears that a factor may be transferred from toe

denominator to the numerator of a fraction, or vice versa, by changing the sign

of its exponent.
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EXAMPLES.

Write -T-S in one line. Ana. a?b*cr~*(t~i.

0*0?

3amcB
Write j in one line. Ans. 3a'Dcad~fe~*.dw

Write zfj- in ne line. Ans.

a5i<
Write &P

AB
Write TT all in the lower line. Ans.

A5B6

Write p-s with all positive exponents. Ans.

a<*b
Write

Y J_. with all positive exponents. Ans.

III. By combining the last two conventions, we arrive at a third notation,

which is the negative and fractional exponent.

Let it be required to extract the ri* root of .

_
In the first place, =a~m ; hence y = Va~m=a n

> substituting the

fractional exponent for the ordinary sign of the radical.

As in words, am is usually enunciated a to the power m, m being a positive
m _ m

integer ; so by analogy, a", a~
m

, a " are usually enunciated, a to the power m
by n, a to the power minus m, and a to the power minus m by n.

All that has been hitherto said, with regard to fractional and negative ex-

ponents must be considered as a mere matter of definition ; in short, that by a

convention among algebraists a" is understood to mean the same thing as

1 _- /I
Vam , a~m to be the same as , and a " as n / . We shall now proceed lo

prove that the rules already established for the multiplication, division, forma-

tion of powers, and extraction of roots of quantities affected with positive in-

tegral exponents, are applicable without any modification, when the exponents
are fractional or negative. We shall examine the different cases in succession.

3 2
68. MULTIPLICATION. Let it be required to multiply a* by a* ; then it is

asserted that it will be sufficient to add the two exponents, and that

For, by our definition,

a? =
And.

=arr by definition in (Art. 67, I.).



68 ALGEBRA,

_ 3 5

Again, let it be required to multiply a T
by <

; then it is asserted that

_ 3 5 _ 3 I 5

a * x ae=a
~

For.

=a12
by definition in (Art. 67, 1.)

Generally, let it be required to multiply a n
by a? ; then

m p _l_P

tf-
<=Xa**afc~

F^! -*

up mq
*

s=0 n<> .

For,
"

p

a =

np mq

=a ni by definition.

69. Hence we have the following general

RULE FOR EXPONENTS IN MULTIPLICATION.

In order to multiply quantities expressed by the same letter, add the ex-

ponents of that letter, whatever may be the nature of the exponents.

This is the same rule as was established in (Art. 11) for quantities affected

with integral and positive exponents. According to this rule, we shall find

_ 4 1 _ 14 7

=6a T 6

- T
70. DIVISION. Let it be required to divide a 2

by a*; then it is asserted

that it will be sufficient to subtract the index of the divisor from the index of

the dividend, and that we shall thus have

*.
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For.

a*= Vo3
, and a*= tya.

=\- t>7 (Art. 62)v a '

=a* by definition.

In like manner, we can prove that

a*
I ( 1)( ^

a

/*=<z .

m p

Generally, let it be required to divide a* by cfl.

Then,
m p m p

For,
m p

a"= V~a, and cfl=

= a "! by definition.

71. Hence we have the following general

RULE FOR EXPONENTS I>* DIVISION.

In order to divide quantities expressed by the same letter, subtract the ex-

ponent of the divisor from the exponent of the dividend, whatever may be the

nature of the exponents.

This is the same rule as that established in (Art. 17) for quantities affected

with integral and positive exponents. According to this rule, we have

3 3 _1 7

0-6* -j-a
2^=

TvJ. FORMATION OF POWERS. In order to raise a monomial to any power,
the rule given in the case of positive and integral exponents was. to multiply
the index of the quantity by the index of the power sought. We have now
to prove that this holds good, whatever may be the nature of the exponent.
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Let it be required to raise a7 to the 4th
power.

Then,
X4

For,

But,

(a
1

)
=aT

20

T= V^5
) and (a

1

)
=

( \^a
5
)

4
.

( V<?)
4= Va55

. V (Art. 63)

Generally, let it be required to raise a n to the power p.

Then,

For,

But,

( sk
f

^XP

\aV =a Q

mp

=a~.

m / m\p

a n= V m
, and \a

n
) =( Vam

)
p -

The demonstration will manifestly be precisely the same ifwe suppose one

or both of the indices to be negative.

73. Hence we have the following general

RULE FOR RAISING A MONOMIAL TO ANY POWER.

Multiply the exponent of the monomial by the exponent of the power required,

whatever may be the nature of the exponents.

This is the same rule as that established in (Art. 55) for quantities affected

with positive integral exponents. According to this rule, we have

3 5 3V ,
'

(0
s
)
=a

V oX

_ 3
=64a V.

74. EXTRACTION OF ROOTS. In order to extract the nth root of any quan-

tity according to the rule in (Art. 55), we must divide tho exponent of each

letter by the index n of the root. Let us examine the case of fractional av -

ponents.
s

Let it be required to extract the cube root of a 7.

ex-
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SJ+ 3

71

3/5 3 /
* = Va5

, and .-. \/a
3=V Va -

For,

But,

=0', by definition.

m

Generally, let it be required to extract the p^ root of a

Then,

For,

But,

p /
~

p I

=\/am and ..ya
n ="V Vam *

'am=Vam
, (by Art. 58),

m

=a"P, by definition.

75. Hence we have the following

RULE FOR THE EXTRACTION OP ANT ROOT OF AN ALGEBRAIC MONOMIAL.

Divide the exponent of the monomial by the exponent of the root required,

whatever may be the nature of the exponents. Thus,

="2S

^=a Ia
.

^ofb~
3=a^~'b~

2^

76. We shall close this discussion by an operation which includes the demon-

stration of every possible variety of the two preceding rules.

m r
Let it be required to raise a to the power of ; we must prove that

s

m
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If we recur to the origin of this notation, we find that

=a M
, by definition.

77. The notation above explained can be extended to polynomials, by in-

cluding them within brackets, in the same manner as was explained in the case

of integral exponents.

Thus, (z-j-a)
2

signifies the same thing as -\fx-}-a, or the square root of

x-\-a.

i 1

So, (z-j-s)
2 is equivalent to ,

or unity divided by the square root

y x-\-a

ofx+a.

In like manner, (x-\-a-\-b)
f will be the same as V (

x+ fl+ &)
3 or thefourth

s
3

root of the third power of the quantity x-^-a-^-b^ and (x-\-a-\-b)
f

will be

unity divided by the last-mentioned quantity. Since unity is always under-

stood to be the exponent when no other is expressed, (ar-j-a)"
1

is the same as

: , and so on. The same rules which have been established for the treat-
x-\-a

ment of monomials affected with exponents will also manifestly apply to poly-

nomials under the same restrictions.*

(1) a

(2) a

EXAMPLES.

_ 3 _ 7 _13 1

t- ,/E.
aW ac2

* The calculus of fractional exponents, says Lacroix, is one of the most remarkable ex-

amples of the utility of signs, when they are well chosen. The analoiry which exists be-

tween fractional and entire exponents renders the rules to be followed in the calculus of

the latter applicable to the former, while particular rules are requisite for the calculus
1

of

radicals. The farther we advance in algebra, the more we perceive the numerous advan-

tages which have resulted to that science from the notation of exponents, invented by
Descartes.
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(4) a*-a*=ai =a *

c

(5) caSr<fc=.a

(6) a*+a~~~~*c=

(3
2\ I 12

aT6*)*=a
T&.

^ i

c*d ) T c 3d 3

(10)

(i
!> 1\/1 i\ 3 3

*3+*V+2/ 2
) x Vr -^

4;=^-yT
-

(13) z+y X

(U) |=a!_afii+aiif_ 6T >

(15)

99 3310 2J 13
)
T57 2 r *

.

(16) (a*-l

(17)

(18) m

(19) J

(20)

'

It may be asked here whether the rules for the calculus of exponents apply to incom-

mensurable and imaginary exponents.

With regard to incommensurable exponents, it may be said that they have not absolutely

of themselves any signification, and that, in order to give them one, it is necessary to con-

ceive them in imagination, replaced by their approximate commensurable values. A formu-

la, therefore, into which incommensurable exponents enter, should be considered as repre-

senting the limit toward which the values deduced from it tend by the substitution of

commensurable numbers for the exponents, differing from them by as1 small a quantity as

we choose to assign ; in this way we perceive that the proposed expression will represent

exactly this some limit, when the same operations shall have been executed upon the in-

commensurable exponents which it contains, as would be if they were commensurable.

Thus, for example, m and n being incommensurable quantities, we shall always have

For, if m' and it represent their approximate commensurable values, we have

* For a variety of examples in transformations, see Appendix.
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The first members of this equality tend toward the same limit as the second. But

amX n
represents the limit of the one, and am+n that of the other; hence, amXan=am+n

-

With regard to imaginary exponents, there is necessary here, as every where, a tacit

admission that the general relations of real quantities, represented by letters, hold good when
these letters are replaced by symbols of quantities which are imaginary.

This subject will be better understood after the student has been over that of extrac-

tion of roots by approximation.

78. Having thus discussed the formation of powers, and the extraction of

roots in monomial quantities, we shall now direct our attention to polynomials ;

and, in the first place, let it be required to determine the square of x-\-a;

then,

=x*-\-2xa-\-d* by rules of multiplication.

By inspection of this result, it is perceived that the square of a binomial con-

tains the square of each term together with twice the product of the two.

Next, let it be required to form the square of a trinomial (x-{-a-{-b). Let

us represent, for a moment, the two terms, x-\-a, by the single letter z.

Then,

=z*+2zb+b* ---- (1).

But,

And,

Therefore, substituting for z3 and 2z& then1 values in (1), we find

Hence it appears that the square of.a trinomial is composed of the sum of the

squares of all the terms, together with the sum of twice the products of all tiic

terms multiplied together two and two.

We shall now prove that this law of formation extends to all polynomials,

whatever may be the number of terms. In order to demonstrate this, let us

suppose that it is true for a polynomial consisting of n terms, and then en-

deavor to ascertain whether it will hold good for a polynomial composed of

(w+1) terms.

Let x+a+i+c-)------h^-M be a polynomial consisting of n+1 terms,

and let us represent the sum of the first n terms by the single letter z ; then

=z8
-f 2z

or, putting for z its value, =(x+a+b-\-c-\
+c+

But the first part of this expression, being the square of a polynomial con-

sisting of n terms, is, by hypothesis, composed of the sum of the squares of

all the terms, together with twice the sum of the products of all the torms

multiplied two and two ; the second part of the above expression is equal to

twice the sum of the products of all the first n terms of the proposed poly-

nomial, multiplied by the (n-\-l)
tfl term I; and the third part is the square of

the +!)* termZ.
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Hence, if the law of formation already enounced holds good for a poly-

nomial composed of n terms, it will hold good for a polynomial composed of

(n-f-1) terms.

But we have seen above that it does hold good for a polynomial composed

of three terms ;
therefore it must hold for a polynomial composed offour terms,

and therefore for a polynomial ofjive terms, and so on in succession. There-

fore the law is general, and we have the following

RULE FOR THE FORMATION OF THE SQUARE OF A POLYNOMIAL.

The square of any polynomial is composed of the sum of the squares of all

the terms, together with twice the sum of the products of all the terms multiplied

together tico and two. According to this rule, we shall have,

(1)

(2) (a b c+ff)
s=a2+6s+c3

-fd
3 2ab 2ac+2a^+26c 2bd 2cd.

If any of the terms of the proposed polynomial be affected with exponents
or coefficients, we must square these monomials according to the rules already

established.

(3) (2a 4&*c3
)
3=4a*+16&4c6 16a&8c.

(4) (3a 2a&+4&3
)
s=9a<+4as&3+16M 12a36

-f24a
26* I6ab*

=9a* I2asb -\-2Sa-b- IGab3+ 166*, arranging ac-

cording to powers of a, and reducing.

(5) (5a
s6 4a&c+66c

s 3a2
c)

3=2oa462+16a2&2c3+36& ::c4-j-9a
4c*

40a363c+ 60a-b3c-30a*bc
48a&2c3-f 24a

3
fec

3

4-366^

79. Let us now pass on to the extraction of the square root of algebraic

quantides.

Let P be the polynomial whose root is required, and let R represent the

root which for the moment we suppose to be determined ; let us also suppose
the two polynomials, P and R, to be arranged according to the powers of

some one of the letters which they contain ; a, for example.
If we reflect upon the law just given of the formation of the square of a

polynomial, it win be seen that the first two terms of the polynomial P, when
thus arranged, are formed without reduction, and will enable us at once to de-

termine the first two terms of the root sought ; for,

1. The square of the first term of R must involve a, affected with an ex-

ponent greater than any that is to be found in the other terms which compose
the square of R ; because this exponent is double the highest exponent of a in

R, and must be greater than the double of any lower exponent, or than the re-

sult produced by adding it to one of the lower exponents, or by addin^ any
two of them together.

2. Twice the product of the first term of R by the second must contain a,

affected with an exponent greater than any to be found in the succeeding
terms ; for it will be the sum of the highest, and the uext to the highest ex-

ponent of a in R.
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It follows from this, that if P be a perfect square,

I. The first term must be a perfect square ; and the square root of this

term, when extracted according to the rule for monomials (Art. 49), is the first

term of R.

II. The second term must be divisible by twice the first term of R thus

found, and the quotient will be the second term of R.

III. In order to obtain the remaining terms of R, square the tivo terms ofE,

already determined, and subtract the result from P
;
we thus obtain a new

polynomial, P', which contains twice the product of the first term of R by the

third term, together with a series of other terms. But twice the product of

the first term of R by the third must contain a, affected with an exponent

greater than any that is to be found in the succeeding terms, and hence this

double product must form the first term of P'.*

IV. The first term of P' must be divisible by twice the first term of R, and

the quotient will be the third term of R.

V. In order to obtain the remaining terms of R, square the three terms of

the root already determined, and subtract the result from the original poly-
nomial P;f we thus obtain a new polynomial, P", concerning which we may
reason precisely in the same manner as for P', and continuing to repeat the

operation until we find no remainder, we shall arrive at the root required.
The above observations may be collected and imbodied in the following

RULE FOR THE EXTRACTION OF THE SQUARE ROOT OF ALGEBRAIC POLY-

NOMIALS.

1. Arrange the polynomial according to the powers of some one letter.

2. Extract the square root of the first term according to the rulefor monomi-

als, and the result will be the first term of the root required.

3. Square the first term of the root thus determined, and subtract itfrom the

original polynomial.
4. Double the first term of the root, and divide by it the first term of the re-

mainder, and annex the result (which will be the second term of the root], with

its proper sign, to the divisor.

5. Multiply the whole of this divisor by the second term of the root, and sub-

tract the productfrom the first remainder.

6. Divide this second remainder by twice the sum of the first two terms of
the root already found, and annex the result (which will be the third term of
the root), with its proper sign, to the divisor.

7. Multiply the whole of this divisor by the third term of the root, and sub-

tract the product from the second remainder ; continue the operation in this

manner until the whole root is ascertained.

The above process will be readily understood by attending to the following

examples :

EXAMPLE 1.

Extract the square root of lOz4 Wx3
IS^-fS^-f-Qx

6 2x+l.
Or, arranging according to the powers of x,

* The square of the second term of R usually contains the same exponent of the letter

of arrangement, but this is already subtracted from P, and not left in P'.

t In practice, this operation is dispensed with by following the precepts 5, 7, in the fol-

lowing rule, which evidently come to the same thing.
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3x*9x 12x5-f lOx4
lOxS-j-Sx

2 2x+l
9x

Gx3 5 lOx* lOxs+Sx
8 2x+l

4x

6z 10x3+5xJ 2x+l
Gx4 4xs+ Xs

Gr3 4x2+

ftr3 4x3+2x 1 -

6x3+4xz 2x+l
0.

Having arranged the polynomial according to powers of x, we first extract

the square root of 9-t6, the first term ; this gives Sx3 for the first term of the

root required ; this we place en the right hand of the polynomial, as in division ;

squaring this quantity, and subtracting it from the whole polynomial, we ob-

tain for a first remainder, 12x5-r-10r* 10r5+5x3 2x+l ; we now double

3r3, and place it as a divisor on the left of this remainder, and dividing by it

121s
, the first term of the remainder, we obtain the quotient 2x* (the

second term of the root sought), which we annex, with its proper sign, to the

double root Gx3 ; multiplying the whole of this quantity, Gx3 2x*, by 2x*

(which produces twice the product of the first term of the root by the second,

together with the square of the second), and subtracting the product from the

first remainder, we obtain for a second remainder, Gx4 10x3-|-5x
2

2x-j-l.

Next, doubling Sx3 2X3
, the two terms of the root thus found, and dividing

Gx4
, the first term of the new remainder, by Gx3, the first term of the double

root, we obtain x for a quotient (which is the third term of the root sought),

and annex it to the double root Gx3 4x*, multiplying the whole of this quan-

tity Gx3 4x3
+:r by x (which produces twice the first by the third, twice the

second by the third, and the square of the third), and subtracting the product

from the second remainder, we obtain a third remainder, 6x3-f-4x
2

2x-f-l ;

we now double Sx3 2x2
-[-x, the three terms of the root already found, and

dividing Gx3, the first term of the new remainder, by Gx3
, the first term of

the double root, we obtain 1 for the quotient (which is the fourth term of

the root sought), and annex it to the double root Gx3 4x3
-|-2x ; multiplying

the whole of this quantity Gx3 4x2
-j-2x i Dy i, and subtracting it from

the third remainder, we find for a new remainder, which shows that the

root required is

Sx3 2x*+x 1.
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80. If the proposed polynomial contain several terms affected with the same

power of the principal letter, we must arrange the polynomial in the manner

explained in division (Art. 20) ; and in applying the above process we shall be

obliged to perform several partial extractions of ike square roots of the coeffi-

cients of the different powers of the principal letter, before we can arrive at the

root required."

Extract the square root of

(a b)(c d)tf+{2(a &)(/+)+ (c d)
2
}:r

2
+2(c d)

Ans. (a 6)x
2+(c d)x+f+g.

Such examples, however, very rarely occur.

Before quitting this subject, we may make the following remarks :

I. No binomial can be a perfect square ; for the square of a monomial is a

monomial, and the square of the most simple polynomial, that is, a binomial,

consists of three distinct terms, which do not admit of being reduced with

each other. Thus, such an expression as aa+62
is not a square ;

it wants the

term i 2ab to render it the square of (ai b).

II. In order that a trinomial, when arranged according to the pouv/s of
some one letter, may be a perfect square, the two extreme terms must t-e perfect

squares,* and the middle term must be equal to twice the product of the square
roots of the extreme terms. When these conditions are fulfilled, we may obtain

the square root of a trinomial immediately, by the following

RULE.

Extract the square roots of the extreme terms, and connect the two terms thus

found by the sign + , when the second term of the trinomial is positive, and by

the sign , when the second term of the trinomial is negative. Thus, the ex-

pression

9a6 48a45 2
+64"a

2
Z>
4

is a perfect square ; for the two extreme terms are perfect squares, and the

middle term is twice the product of the square roots of the extreme terms;

hence the square root of the trinomial is

Or,

3a3 8aZ>2 .

An expression such as 4a--}-12ab 962 can not be a perfect square, although

4a2 and 9ft2, considered independently of their signs, are perfect squares, and

I2ab=2(2a . 5b) ; for 9i2 is not a square, since no quantity, when multi-

plied by itself, can have the sign

III. In performing the operations required by the general rule, if we find

that the first term of one of the remainders is not exactly divisible by twice

the first term of the root, we may immediately conclude that the polynomial

is not a perfect square ; and when we arrive at a term in the root having a

power of the letter of arrangement of a degree less than half that of this letter

in the last term of the given polynomial, we may be sure that the operation

will not terminate. This is on the supposition that the given polynomial is ar-

* In order that any polynomial may be a perfect square, the two extreme terms most be

perfect squares, if it be arranged according to the powers of some letter.
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ranged according to the decreasing powers of the letter. If it be according to

the increasing powers, substitute the word greater for " less" in the above

precept.

IV. We may apply to the square roots of polynomials which are not per-

fect squares the simplifications already employed in the case of monomials

(Art. 51). Thus, in the expression

Vra36+4as6J+4a 3
.

The quantity under the radical sign is not a perfect square, but it may be

put under the form

-/a6(a
a+4a6+ 462

).

The iactor within brackets is manifestly the square of a+26; hence

v/g6(a
i!+4a6-f 46*)

= (a+26) Va6-

81. Let us next proceed to form the cube of ar-j-a.

(x+a)*=(x+a) X (x+a) X (x+a)
=z3

-\-3x
3

a-\-3xa
s
-{-a? by rules of multiplication.

Let it be required to form the cube of a trinomial (z-f-a-f-fc); represent

the last two terms a-\-b by the single letter s ; then

(x+a+bf=(x +s)*

+ 3a3 6+3a62
-f 6

s
.

This expression is composed of the sum of the cubes of all the terms, together

with three times the sum of the squares of each term, multiplied by the simple

power of each of the others in succession, together with six times the product of
the simple power of all the terms.

By following a process of reasoning analogous to that employed in (Art. 78),

we can prove that the above law of formation will hold good for any polynomial
of whatever number of terms. We shall thus find

4- 3c*a+ 3c=6+ 3c-d+ 3d*a -f 3d
3b -|-3d*c+ 6a6c-fGabd+6acd+ 6bcd

*= 8a6

In a similar manner, we can obtain the 4th, oth, &c., powers of any poly-

nomial.

For more upon this subject, see a subsequent article (105).

82. We shall now explain the process by which we can extract the cube

root of any polynomial, a method analogous to that employed for the square

root, and which may easily be generalized, so as to be applicable to the ex-

traction of roots of any degree.

Let P be the given polynomial, R its cube root. Let these two poly-
nomials be arranged according to the powers of some one letter, a, for example.
It follows, from the law 'of formation of the cube of a polynomial, that the cube

of R contains two terms, which are not susceptible of reduction with any
others : these are, the cube of the first term, and three times the square of

F
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the first term multiplied by the second term ; for it is manifest that these tv,

terms will involve a affected with an exponent higher than any that is to be

found in the succeeding terms. Consequently, these two terms must form

the first two terms of P. Hence, if we extract the cube root of the first term

of P, we shall obtain the first term of R, and then, dividing the second term

of P by three times the square of the first term of R thus found, the quotient

will be the second term of R. Having thus determined the first two terms of

R, cube this binomial, and subtract it from P. The remainder, P', being ar-

ranged, its first term will be three times the product of the square of the first

term of R by the third, together with a series of terms involving a, affected

with a less exponent than that with which it is affected in this product.

Dividing the first term of P' by three times the square of the first term of R,
the quotient will be the third term of R. Forming the cube of the trinomial

root thus determined, and subtracting this cube from the original polynomial

P, we obtain a new polynomial, P", which we may treat in the same manner

as P', and continue the operation till the whole root is determined.*

EXAMPLES.

(1) Extract the cube root of 27a? 135x2
-|-225x 125.

(2) V(8x6+48z^+60z2^ SOzV 90z4x34-108z
5z 27z6

).

ANSWERS.

(1) 3z 5.
| (2) 2z2+4zz 3z2 .

EXTRACTION OF THE SdUARE ROOT OF NUMBERS.

83. Rules are given in Arithmetic for extracting the square and cube roots of

any proposed number; we shall now proceed to explain the principles upon
which these rules are founded.

The numbers

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 100, 1000,

when squared, become

1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 10000, 1000000,

and reciprocally, the numbers in the first line are the square roots of the num-

bers in the second.

Upon inspecting these two lines we perceive that, among numbers expressed

by one or two figures, there are only nine which are the squares of other

whole numbers ; consequently, the square root of all other numbers consisting

of one or two figures must be a whole number plus a fraction.

Thus, the square root of 53, which lies between 49 and 64, is 7 plus a frac-

tion. So, also, the square root of 91 is 9 plus a fraction.

84. It is, however, veiy remarkable that the square root of a whole number,

which is not a perfect square, can not be expressed by an exactfraction, and is,

therefore, incommensurable with unity.

To prove this, let
j,

a fraction in its lowest terms, be, if possible, the square

a a2

root of some whole number ; then the square of TI or
yj,

must be equal to this

whole number. But since a and b are, by supposition, prime to each other

* This subject will be resumed a few pages farther on.



SQUARE ROOT OF NUMBERS. 83

(?".
e., have no common divisor), a3 and b2 are also prime to each other;* there-

a*
fore T^ is an irreducible fraction, and can not be equal to a whole number. .

b~

85. The difference between the squares of two consecutive whole numbers

is greater in proportion as the numbers themselves are greater ; the expres-

sion for this difference can easily be found.

Let a and a-j-1 be two consecutive whole numbers ;

Then,

(a+1)
3 =aj+2a+l.

Hence.

that is to say, the difference of the squares of two consecutive whole numbers is

equal to twice the less of the two numbers plus unity.

Thus, the difference between the squares of 348 and 347 is equal to

o x 347+1, or 695.

* This depends upon the principle that, if any prime number, P, will divide the product

of two numbers, it must divide one of them, which may be demonstrated as follows :

Let A and B be the two numbers, and let it be supposed that P will not divide A, we
are to prove that it must divide B.

Dividing- A by P, and denoting the quotient by Q, and the remainder by P', we have

AR P'B
A=PQ.+P/

.'. multiplying by B, AB=POB+P'B .-. dividing by P, ^-=QB-(-
-.

Since by hypothesis AB is divisible by P, P'B must be, else we should have a whole

number, equal to a whole number plus a fraction, which is impossible. Proceed now with

P and P' after the method for finding a common divisor, and let P", P'", &c., be the suc-

cessive remainders, which can none of them be zero, because P is by hypothesis a prime
number (i. e., a number divisible only by itself and unity) : these remainders must go on di-

minishing till the last becomes unity, and we shall have the series of equalities,

P=P'Q.'+P", F=P"Q."-fP"', &c. ;

or, multiplying by B and dividing by P,

P'Q/B
"

P"B P'B P"Q."B
,
P'"BB=

P P '

-p
The first of these equalities shows that if P'B is divisible by P, P"B must also be divisi-

ble ; and if both these are divisible, the second equality shows that F'^B is divisible by
P, and so on. But the remainders, P", P' 1

", &c~, diminish till the last becomes unity, and
we shall thus have, finally, 1XB, or B divisible by P. Q, E. D.

Now, since a* is the product of a and a, any prime number which divides a* must divide

a, or which divides b* must divide b, so that any prime number which divides both a* and
te must divide a and b.

Every number is either prime or composed of prime numbers as factors, and if this num-
ber will divide the two terms of a fraction, its prime factors will successively divide them.

This follows from (10, I., 2).

As an addition to this note may be demonstrated the following theorem : A literal quan-
tity can not be decomposed into primefactors in different ways.
Let ABCD ... be a product of prime factors, and suppose that it could be equal to an-

other product, abed . . ., the factors a,b,c,d... being also prime. The factor a, dividing
abed, must divide the equal ABCD . . . ; but if the prime quantity a is different from each
of the quantities A, B, C, D, &c., it can not divide any of them. Not dividing either A or

B according to the above theorem, it can not divide the product AB. Not dividing either

AB or C, it will not divide the product ABC, and so on. The factor a must, therefore,

necessarily be equal to one of the factors A, B, C, ice. Suppose a=A. Dividin? the two

products by A. the remaining products, BCD . . . and bed.. ., are still equal, and applying to

them the preceding reasoning, we conclude that b ought to be equal to one of the factors of

the product, BCD . . ., and so on. The two products, ABCD . . . and abed . . ., must, there-

fore, be composed of the same prime factors. Q. E. D
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The square of a number will always consist of twice as many digits, or one

less than twice as many, as the number itself. Thus, the square of 10 is 100,

and the square of any number less than 10 must be less than 100, or contain

not more than two figures. The square of 100 is 10000, and the square of all

numbers between 10 and 100 must be between 100 and 10000 ; i. e., consist

of 3 or 4 figures. In the same way it may be shown that the square of a

number containing three figures must be one containing five or six figures, and

so on ; i. e., the square of a number consists of twice as many digits as the

number itself, or one less than twice as many.
Let us now proceed to investigate a process for the extraction of the square

root of any number, beginning with whole numbers.

EXTRACTION OF THE SQ.UARE ROOT OF WHOLE NUMBERS.

86. If the number proposed consist of one or two figures only, its root may
be found immediately by inspecting the squares of the nine first numbers in

(Art. 83). Thus, the square root of 25 is 5, the square roof of 42 is 6 plus a

fraction, or 6 i the approximate square root of 42, and is within one unit of

the true value ; for 42 lies between 36, which is the square of 6, and 49, which

is the square of 7.

Let us consider, then, a number composed of more than two figures, 6084

for example.
Since this number consist of four figures, its root must 60'84

necessarily consist of two figures, that is to say, of tens 49

and units. Designating the tens in the root sought by a, 148

and the units by b, we have

118'4

118'4

0.

which shows that the square of a number consisting of tens and units is com-

posed of the square of the tens, plus twice the product of the tens by the units,

plus the square of the units.

This being premised, since the square of a certain number of tens must be

a certain number of hundreds, or have two ciphers on the right, it follows that

the squares of the tens contained in the root must be found in the part 60 (or

60 hundreds), to the left of the last two figures of 6084 (which written at full

length is 6000 -f- 80 -f- 4), the 84 forming no part of the square of the tens; we,

therefore, separate the last two figures from the others by a point. The part

60 is comprised between the two perfect squares 49, and 64, the roots of which

are 7 and 8 ; hence 7 is the figure which expresses the number of tens in the

root sought; for 6000 is evidently comprised between 4900 and 6400, which

are the squares of 70 and 80, and the root of 6084 must, therefore, be com-

prised between 70 and 80 ; hence, the root sought is composed of 7 tens and

a certain number of units less than ten.

The figure 7 being thus found, we place it on the right of the given number,
in the place of tens, separated by a vertical line as in division ; we then sub-

tract 49, which is the square of 7, from 60, which leaves as remainder 11

(which is 11 hundreds), after which we write the remaining figures, 84.

Having taken away the square of the tens, the remainder, 1184, contains, as

we have seen above, twice the product of the tens multiplied by the units

plus the square of the units. But the product of the tens multiplied by the

units must be tens, or have one cipher on the right, and, therefore, the last
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figure 4 can not form any part of the product of the tens by the units ; we,

therefore, separate it from the others by a point.

If we double the tens, which gives 14, and divide the 118 tens by 14, the

quotient 8 is the figure of units in the root sought, or a figure greater than the

one required. It may manifestly be greater than the figure sought, for 118

may contain, in addition to twice the product of the tens by the units, other

tens arising from the square of the units, which may exceed the denomination

units. In order to determine whether 8 expresses the real number of units

in the root, it is sufficient to place it on the right of 14, and then multiply the

number 148, thus obtained, by 8. In this manner we form, 1, the square of

the units ; 2, twice the product of the units by the tens. This operation

being effected, the product is 1184 ; subtracting this product, the remainder is

0, which shows that 6034 is a perfect square, and 78 the root sought.

It will be seen, in reviewing the above process, that we have successively

subtracted from 6084, the square of 7 tens or 70, plus twice the product of 70

by 8, plus the square of 8, that is, the three parts which enter into the com-

position of the square of 70-4-8, or 78 ; and since the result of this subtraction

is 0, it foDows that 6084 is the square of 78.

The quotient obtained from dividing by double the tens is a trial figure ; it

will never be too small, but may be too great, and on trial may require to be di-

minished by one or two units.

Take as a second example the number 84J. 8'41

This number being comprised between 100 and 10000, its

root must consist of two figures, that is to say, of tens and 49

units. We can prove, as in the last example, that the root Z
of the greatest square contained in 8, or in that portion of the

number to the left of the last two figures, expresses the number of tens in the

root required. But the greatest square contained hi 8 is 4, whose root is 2,

which is. therefore, the figure of the tens. Squaring 2, and subtracting the

result from 8, the remainder is 4 ; bringing down the figures of the second

period 41, and annexing them on the right of 4, the result is 441, a number
which contains twice the product of the tens by the units, plus the square of

the units.

We may farther prove, as in the last case, that if we point off the last figure

1, and divide the preceding figures 44 by twice the tens, or 4, the quotient
will be either the figure which expresses the number of units in the root, or a

figure greater than the one sought. In this case the quotient is 11, but it is

manifest that we can not have a number greater than 9 for the units, for other-

wise we must suppose that the figure already found for the tens is incorrect.

Let us try 9 : place 9 to the right of 4. and then multiply this number 49 by
9 : the product is 441, which, when subtracted from the result ~of the first

operation, leaves a remainder 0, proving that 29 is the root required.

Let us take, as a third example, a number which is not a perfect square,
such as 1287.

Applying to this number the process described in the pre- 12*87 135

ceding example, we find that the root is 35, with a remainder 9

62. This shows that 1287 is not a perfect square, but that 65 38'7

it is comprised between the square of 35 and that of 36.

Thus, when the number is not a perfect square, the above

44'1

325

62
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process enables us at least to determine the root of the greatest square con-

tained in the number, or the integral part of the root of the number.

87. Let us pass on to consider the extraction of the square root of a num-

ber composed of more than four figures.

Let 56821444 be the number. 56'82'14'44

Since the number is greater than 10000, its root 49

7538

78'2

725

571'4

4509

must be greater than 100 ; that is to say, it must 145

consist of more than two figures.* But, whatever

the number may be, we may always consider it as 1503

composed of units and of tens, the tens being ex-

pressed by one or more figures. (Thus, any num- 15068 1205

ber such as 37142 may be resolved into 37140+2,
or 3714 tens, plus two units.)

Now the square of the root sought, that is, the proposed number, contains

the square of the tens, plus twice the product of the tens by the units, plus

the square of the units. But the square of the tens must give at least hun-

dreds ; hence the last two figures, 44, can form no part of it, and it is in the

portion of the number to the left hand that we must look for that square.

But this portion containing more than two figures, its root will consist of units

and tens
; it will, therefore, be necessaiy to commence the process for finding

the root of this portion by cutting off its two right-hand figures, 14, and the

square of the tens of the tens- is to be sought in the figures now remaining at

the left, 5682. This number being the square of two figures, we again separate

82, and seek for the square of the tens of the tens of the tens in the two re-

maining figures, 56. The given number is thus separated into periods of two

figures each, beginning on the right. We then go on to extract the root of

the number 5682, as in the previous examples ; this will give the tens of the root

of the number 568214. We then double these tens for a divisor, and take the

remainder after the last operation, with 14 annexed for a dividend ; we divide

this dividend, after cutting off the right-hand figure, and the quotient will be

the units of the root of 568214. All the figures now found of the root will

constitute the tens of the root of the given number, and we find the units by
the rule previously given. The detail of the whole operation is as follows :

Extracting the root of 56, we find 7 for the root of 49, the greatest square
contained in 56 ; we place 7 on the right of the proposed number, and squaring

it, subtract 49 from 56, which gives a remainder 7, to which we annex the fol-

lowing period, 82. Separating the last figure to the right of 782, and then

dividing 78 by 14, which is twice the root already found, we have 5 for a quotient,

which we annex to 14 ; we then multiply the whole number 145 by 5, and

subtract the product 725 from 782. We next bring down the period 14, an-

nex it to the second remainder 57, and point off the last figure of this number
5714. Dividing 571 by 150, which is twice the root already found, the quotient
is 3, which we place to the right of 150, and multiplying the whole number
1503 by 3, we subtract the product 4509 from 5714.

Finally, we bring down the last period 44, annex it to the third remainder

1205, and point oft" the last figure of this number 120544. Dividing 12054

* We have seen in the last article that it will consist of four figures, half as many as .

given number. Had the given number contained hut seven figures, the root would still

composed of four.
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1506, which is twice the root already found, the quotient is 8, which we place

on the right of 1506, and multiplying the whole number 15068 by 8, we sub-

tract the product 120544 from the last result 120544. The remainder is ;

hence 7538 is the root sought.

From what has been said above, it is easy to deduce the rule, ordinarily

given in Arithmetic, for the extraction of the square root of a number consist-

ing of aoy number of figures, and which it is unnecessary here to repeat.

EXTRACTION OF THE SOTARE ROOT BY APPROXIMATION.

88. When a whole number is not the square of another whole number, we
have seen (Art. 84) that its root can not be expressed by a whole number and

an exact fraction ; but although it is impossible to determine the precise value

of the fraction which completes the root sought, we can approximate it as

nearly as we please.

Suppose that a is a whole number which is not a perfect square, and that

we are required to extract the root to within , that is, to determine a number
tt

which shall differ from the true root of a, by a quantity less than the fraction .

To effect this, let us observe that the quantity a may be put under the form

ans

; if we designate the integral, or whole number, portion of the root of an2

by r, this number an3 will be comprised between r~ and (r-J-1)
2

; hence.

is comprised between and , and consequently, the root of a is com-

r3 (r4-l)
J r r+l

"

prised between the roots of and -^ , that is, between - and -
. Thus,ns n* n n

it appears that represents the square root of a within of the true value.n n
From this we derive the following

RDLE.

To extract the square root of a whole number to within a givenfraction, mul-

tiply the given number by the square of the denominator of the given fraction ;

extract the integral part of the square root of the product, and divide this in-

tegral part by the given denominator.

Let it be- required, for example, to find the square root of 59 within of
the true value.

Multiply 59 by the square of 12, that is, 144, the product is 8496 ; the in-

tegral part of the root of 8496 is 92. Hence ff or 7^ is the approximate root
of 59, the result differing from the true value by a quantity less than J*.

So, also,

VH = 3r
4

5 true to
-Jj,

-v/223=142J true to &.
89. The method of approximation in decimals, which is the process most

frequently employed, is an immediate consequence of the preceding rule.

In order to obtain the square root of a whole number within -1-, -i^ - *
I a *

i ' io*A
of the true value, we must, according to the above rule, multiply the proposed
number by (10)*, (100)

3
, (1000)

4
, or, which comes to the same thing,
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place to the right of the number, two, four, six, ciphers, then extract

the integral part of the root of the product, and divide the result by 10, 100,

1000

Hence, in order to obtain any required number of decimals in the root, we
must

Place on the rigkt hand of the proposed number twice as many zeros as we

wish to have decimal figures ; extract the integral part of the root of this new

number, and then mark off in the result the required number of decimal places.

EXAMPLES.

(1) Extract the square root of 3 to six places of decimals.

Ans. 1.732050.

(2) Extract the square root of 5 to six places of decimals.

Ans. 2.236068.

(3) Extract the square root of 12 to six places of decimals.

Ans. 3.464101.

When half, or one more than half, the figures are found, the rest may be

found by division.

(4) Extract the square root of 2 to nine places of decimals.

The first five figures of the root found by the ordinary method are 1.4142 ;

with the remainder, 3836. The next divisor is 28284. Dividing 3836 by

28284, according to the ordinary method of division, produces 1356 for a quo-

tient, which, annexed to 1.4142, before found, gives for the root required

1.41421356.*

Extract the square root of 11 to six places of decimals.

v Ans. 3.316624.

EXTRACTION OF THE SdUARE ROOT OP FRACTIONS.

We have seen (Art. 62) that A /r= 7=; hence, in order to extract the
V 6 v b

square root of a fraction, it is sufficient to extract the square roots of the numer-

ator and denominator, and then divide the former result by the latter. This

method may be employed with advantage when either one or both of the terms

of the proposed fraction are perfect squares ; but when this is not the case, it

will be found inconvenient in practice. If, for example, we take the fraction

/3 V"3

|, although -v/-= (since each of these expressions, when multiplied by it-

self, produces the same quantity, ),
we must find an approximate value both

for V3 aQd also for -\/5, and, after all, we shall not be able to determine at

once the degree of approximation in the result. Under such circumstances

the following process may be employed :

Let the proposed fraction be -r, this may be put under the form
-rj ; this

being premised, let r represent the integral part of the root of the numerator

* The reason for this rule may be given thus : Let k be the part of the root already

found, and z the remaining part. Then k-\-z will be the whole root, and (&-|-z)2=:&3-|-2fo:

-}-z2 the given number ;
as z is but a small fraction of k, aft will be a still smaller fraction,

and may be neglected, so that the given number may, without sensible error, be considered

equal to k*-\-2kz. But & has been taken away, and the remainder, 2fcz, divided by 2k,

"ives ~.
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ab a T*

ab; hence
-j-:,

or -T, is comprised between TJ and p ; consequently, the

root of r is comprised between T and -r . Thus, it appears that 7 repre-

a 1
sents the root of T within r of the true value. Hence, in order to obtain the

o o

square root of a fraction,

Make ihe denominator of the fraction a perfect square, by multiplying both

terms of thefraction by the denominator ; extract the integral part of the root of
the numerator, and divide the result by the denominator.

Let it be required to extract the square root of ^.
7X13 91

This fraction is the same as , or . But the integral part of the
(U) (13)

9
square root of 91 is 9 ; hence is the root sought, a result within ^ of the

lo

true value.

A greater degree of approximation may, perhaps, be required. In this case,

91
returning to the number-

;,
extract the root of 91 to any required degree

(13)-
of approximation. Suppose, for example, we wish to find the root of 91 within

r-Q
of the reaJ*value, it will become by (Art. 88) \/91=9 .53 ---- Hence

7 91 9 53 1
the root of , or- , will be

'

, equal -73 within- of the true value.
13 (13)

J 13 1300

REMARK. It frequently happens that the denominator of the fraction, al-

though not a perfect square, has a perfect square for one of its factors, in

which case the above operation may be simplified.

23
Let the fraction, for example, be . 48 is equal to 16x3, or (4)

3 x3;

23 X 3
hence, multiplying both terms of the fraction by 3, it becomes j-^ 7-, or

I
4

)

1 X v*>)

69

/Toy;
; and the denominator is thus made a perfect square. Extracting the

1 83 83
root of 69 to , which gives 8 . 3, we find , or- for the root required, a

1 J. -.U

result within of the true value.

In general, therefore, whenever the denominator of the fraction invoices a

factor which is a perfect square, multiply both terms of the fraction by the factor
which is not a perfect square.

Extract the square root of- to within .

o -i~

5_5X6X8*_
6 e^xs*

"

e^xs3
' ' ~

"Ve~48

EXTRACTION OF THE SdUARE ROOT OF DECIMAL FRACTIONS.

90. This process is an immediate consequence of the preceding remark.

Required, for example, the square root of 2 . 36.
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236
This fraction is the same as T- ; in this case the denominator is a perfect

square ; extracting, therefore, the integral part of the root of the numerator, we

have , a result within of the true value.
10 10

Again, let it be required to extract the square root of 3.425.

3425
This fraction is the same as

TTTTTTJ-
But 1000 is not a perfect square ; it is,

however, equal to 100x10, or (10)
2 XlO; thus, in order to render the de-

nominator a perfect square, it is sufficient to multiply both terms of the frac-

34250 34250
tion by 10, which gives ., or , .

2
. Extracting the integral part ot the

185
root 34250, we find 185; hence the root required is ,

or 1.8o, a result

which is within - of the true value.

It appears from the above that the number of decimal places must always

be made even before the operation commences.

If we wish to have a greater number of decimal places in the root, we must

add on the right of 34250 twice as many zeros as we wish to have additional

decimal figures.

We thus deduce for the extraction of the square root of a decimal fraction

the following
RULE.

Annex ciphers till there are twice as many, decimal places as are required in

the root, and then proceed as in whole numbers ; or, beginning at the decimal

point, point off"
both ways the usual periods of two figures each.

By which we obtain

V 6799. 6516= 82. 46, V 73. 5=8. 5, ^~7\9=2.8l.

EXTRACTION OF THE CUBE ROOT OF NUMBERS.

91. The numbers

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 100, 1000,

when cubed, become

1, 8, 27, 64, 125, 216, 343, 512, 729, 1000, 1000000, 1000000000 ,

and, reciprocally, the numbers in the first line are the cube roots of the num
bers in the second.

Upon inspecting the two lines, we perceive that, among the numbers ex-

pressed by one, two, or three figures, there are only nine which are ^;er/ec

cubes {, consequently, the cube root of all the rest must be a whole number plus

a fraction.

92. But we can prove, in the same manner as in the case of the square

root, that the cube root of a whole number, which is not the perfect cube ofsome

other whole number, can not be expressed by an exact fraction, and, conse-

quently, its cube root is incommensurable with unity.

93. The difference between the cubes of two consecutive whole numbers

is greater in proportion as the numbers themselves are greater; the expression

for this difference can easily be found.
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Let

a and a -f- 1 be two consecutive whole numbers ;

Then,

(a+l)
3=a3+3as+3a+l ;

Hence,

that is to say, the difference of the cubes of two consecutive whole numbers it

equal to three limes the square of the less of the two numbers, plus three times

the simple power of the number, plus unity.

Thus, the difference between the cube of 90 and the cube of 89 is equal to

3 X(89)
3+3X 89+ 1=24031.

Let us now proceed to investigate a process for the extraction of the cube

root of any number.

EXTRACTION OF THE CUBE ROOT.

94. The cube root of a proposed number, consisting of one, two, or three

figures only, will be found immediately by inspecting the cubes of the first

nine numbers in (Art. 91). Thus, the cube root of 125 is 5, and the cube root

of 54 is 3 plus a fraction, for 3 X 3 X 3=27, and 4 X 4 X 4 =64 ; therefore 3 is

the approximate cube root of 54, within one unit of the true value.

For the purpose of investigating a new and simple rule for the extraction of

the cube root, it will be necessary to attend to the composition of a complete

power of the third degree. Now, since we have

it is obvious that the cube of a number, consisting of tens and units, will be al-

gebraically indicated by the polynomial

where a designates the number of tens, and b the number of units in the root

sought. The number in the tens' place will evidently be found by extracting

the cube root of the monomial a3, for 3/a
3=a, and removing a3 from the poly

nomial a3
+3a-i+ 3ai2+63

, we have the remainder,

and the difficulty that has been hitherto experienced in the extraction of the

cube root entirely consists in the composition of the expression 3tf3+3a&+62
,

which is obviously the true divisor by which to divide the remainder, after

subtracting a3
, or the cube of the tens, for the determination of b, the figure

of the root in the place of units. The part 3a* of the expression 3a2
+3ai+6-,

being independent of 6, the yet unknown part of the root, is employed as a

trial divisor for the determination of b ; but since the expression 3a- -\-3ab+ i-

involves the unknown part of the root in its composition, it is obvious that the

trial divisor 3aJ
, which does not contain 6, will, at the first step of the opera-

tion, give no certain indication of the next figure of the root, unless the figure
denoted by b be very small in comparison with that denoted by a ; for the

trial divisor 3a2 will be considerably augmented by the addend 3ab-\-b
3 when

b is a large number, while the augmentation, when b is a small number, will

not so materially affect the trial divisor.

When the figure in the tens' place is a small number, as 1 or 2. it is hence

obvious that little or no dependence can be placed on the trial divisor ;
but if a
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he great and b small, the trial divisor, 3a2
. will generally point out the value

of b. All this will be evident if we consider that the relative values of a and

b materially affect the true divisor, 3as
-{-3a&-|-&

2
. In the successive steps,

however, of the cube root this uncertainty diminishes
; for, conceiving a to

designate a number consisting of tens and hundreds, and b tie number o

units, then the value of b being small in comparison with a, the amount of the

effect of b in the addend 3ab^-b* wû De very inconsiderable ; hence the trial

divisor, 3a2
, will generally indicate the next figure in the root.

. To remove, in some measure, the difficulty which has hitherto been ex

perienced in the extraction of the cube root, we shall proceed to point out two

methods of composing the true divisor, 3a2
-|-3a&-f-i

2
. and leave the student

to select that which he conceives to possess the greater facility of operation.*

95. First method of composition q/"3a
2
-j-3afe-j-6

2
.

a X a = a2 a3
-j- 3a

26 +- 3a&
2
-f b

3
(a+ b= root sought.

a a2x= ..... a3

a a? -
= 3ab+

b

6 3az 3aZ>

Distinguishing the three columns from left to right by first, second, and

third columns, we write a in the root, and also three times vertically in the

first column ; then a X a produces a2
, which write, also, three times vertically

in the second column ; multiply the second a? by a, placing the product, a3
,

under a3 in the third column ; then, subtracting a
3 from the proposed quantity,

we have the remainder, 3a^b-{-3ab
2
-\-b

3
. The sum of the three quantities in

the second column gives 3a2 for the trial divisor, by which find b, the next

figure of the root, and to 3a, the sum of the last three written quantities in

the first column, annex b ; then the sum, 3a-\-b, is multiplied by i, and the

product, 3ab-{-b*, is placed in the second column; then the trial divisor, 3a2
,

and the addend, 3a6+ 62
, being collected, give the true divisor, 3a2

-J-3a6-}-6
2

,

which multiply by b, and place the product, 3a2
i-|-3a&

2+&3
, under the re-

mainder, 3a26+3a52+63
. When there is a remainder after this operation,

the process may be continued by writing b twice in the first column, under

3a_|_ 6, and 62 once in the second column, under the last true divisor ; then 3a 3

-J- Gab -j- 3i
2

, the sum of the last written three lines in the second column, will

be another trial divisor, with which proceed as above. We have written a'
2

in the second column three times in succession, to assimilate the first step in

the operation to the other successive steps, but the first trial divisor, 3a2
, may

be written at once, and the symmetry of the disposition of the quantities in

the first steps disregarded, f

* These methods may be passed over by the student, as well as that given for the bi-

quadrate root, and the method employed, which is described at (Art. 112), which is appli-

cable to the extraction of the root of the third and fourth, as well as of any other degree.

t Three quantities are added each time
;
in the method on next page, two.
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96. Second method of composing 3a3
+3afc+i-, the true divisor,

a a3+3a36+3a63+63
(a4-6

2a 2a

a 3a3

3a+ 6 .... 3db-\- b*

6

3a+2&
b

5= second trial divisor.

In this method we write a under a in the first column, and the sum 2<z

being multiplied by a, gives 2a3 to place under a? in the second column, and

the sum of 2a3 and a3
is 3a3 for the trial divisor. Again, under 2a in the first

column write a, and the sum of 2a and a gives 3a. Now, having found b by
the trial divisor, annex it to 3a in the first column, making 3a-\-b, which, mul-

tiplied by 6, and the product placed in the second column, gives, by addition,

the true divisor, 3a- -\-3ab-\-b
1
, as before. We shall exhibit the operation of

extracting the cube root by both these methods.

EXAMPLES.

(1) What is the cube root of X5 9x6-\-39x
t

99x*+156z* 144:r+64?

By thefirst method.

3& X^

3& X^

3J^ 3T*

9X3-}-

3x 3x* 9x3+ 9x* . . . . r9x+27a^ 27x3

9x
3x 12x4 72Z3+156X

3 144x+64' '

27*3

12xi 3&T+16

12x 72x3+156*5 144^+64.

(2) What is the cube root of a*+6j* 4013+962: 64 ?

By the second method.

& x+6x5 40x3+96x 64 (x9+2x 4

2x* 2x* 6X5 4Qx*

3xa+2x . . . 6x3+ 4x

3x<+ 6x3+ 4x .... 6x+12x<+ 8x3

3ar-+4x . . . 6x+
2x 12ic* 48xs+96x 64

c 4 . . 12x2 24x+16

12x* 48x3+96x 64.
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(3) What is the cube root of a3+3a26+ 3a&2+&3
+3aV+6a6c-}-3Z>

;:c+3ac2

-|-3&c
2
-j-c

3
? Ans. a-\-b-\-c.

(4) Extract the cube root of z6 6^+lSar
4 20x3

+15.r
3 6z+l.
Ans. a-

2
2x+l.

97. The same process is employed in the extraction of the cube root of

numbers, as in the subsequent examples.

EXAMPLES.

(1) Extract the cube root of 403583419.

7 49 403583419 (739 = root

7 49 343

7 49

60583

147

213 . . 639

3 15339 46017

9

14566419

15987

2199 . . . 19791

1618491 ... 14566419.

(2) What is the cube root of 115501303 ?

115501303 (487 = root

4 . 16 . 64

4 51501

8 32

4 48

128 1024
^^

5824 46592

136 1088

8 .
4909303

6912

1447. . ... 10129

701329 4909303.

98. The local values of the figures in the root determine the arrangement

of the figures in the several columns, as is exemplified by working the last ex-

ample as on next page ; by omitting the terminal ciphers, the arrangement is

precisely the same as in the preceding example.
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115501303 (400+80+7
400 160000 64000000

400

51501303

800 320000

400

480000

1200

80

1280 102400

80

582400 46592000

1360 108800

80 4909303

691200

1440

7

1447 . 10129

701329 4909303

99. Extraction of thefourth root ofwhole numbers.

The investigation of a method for extracting the fourth root of anynumber
is similar to that employed for the cube root. Thus, since

(a+ &)
4=a4+ 4a?b+ 6a*63+ 4afe3+ fr,

we may conceive a to denote the number of tens, and b the number of units

in the root of the number expressed by o4+4a3&+6a3
Z>
3+4a6 3

+fr*. Then

V<r*=#5 the figure in the tens' place, and the remainder, when a4 is removed, is

The method of composing the divisor 4a3+6a3
Z>+4a&

3+63
, for the deter-

mination of fe, the figure in the units' place, may be illustrated as follows :

<* a4+4as
fe+ 6aa&3+4a&3+&4 (a+6

(?X a = <?

=3a3

=3a* 4O3

6a 3

100. From this mode of composing the complete divisor we easily derive

the following process for the extraction of the fourth root of any number.
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EXAMPLE.

What is the fourth root of 1185921 ?

3X3 =
3
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103. Tofind multipliers which wiU render binomial sunls rational.

The product of two irrational quantities is, in many instances, a rational

quantity, and, therefore, an irrational quantity may frequently be found, which,

employed as a factor to multiply some other given irrational quantity, will

produce a rational result ; thus,

l/ax Va =&

Again, since the product of the sum and difference of two quantities is equal

to the difference of their squares, we have, evidently,

( Ja Jb)( Va+ Vb)=a b

(*+

Hence it is obvious that, in these and similar equalities, if one of the factors

be given, the other factor or multiplier is readily known, and the proposed
irrational quantity is thus rendered rational. By a double operation of this

kind,_multip]ying (-/n+-/^+V?) by (/ + Vp /?)> we have (V
+ ^Pf ? or n -\~P 9+2 Vnpt and multiplying thisbyn-f-^ q 2-^np,
the given expression, Vr/l+ A/P+ V?> is rationalized. In the same manner,

since

and the expression V?i 3/y may, therefore, be rationalized by multiplying it

by tyx-'^yxy+tyy/*', and yx-^tyxy+yy3
, multiplied by ^xdb-^y, will

produce a rational result.

Again, by division [see Art. 23 (5), (6), (7)],

Put x=:a ; then x= tya ; x*~'= V"~l
; "*= V*~*i &c. ;

y"=:fe ; then y= i/b ; y
3 = i/b* ; y*= V&3

, &c. ;

hence, by substitution in the three preceding equalities, we have

a b

V& 1

(2)

1- V^~l
- (3)

Now, the dividend being the product of the divisor and quotient, it is obvi-

ous that a binomial surd of the form Va tyb will be rendered rational by

multiplying it by n terms of the second side of equation (1), and a binomial

surd of the form Va4~ V ^^ be rationalized by employing n terms of the

second side of equality (2) or (3), according as n is even or odd, the product
in the former case being a b, and in the latter a 6 or a+ 6.

G
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Note. When n is an even number, employ equation (2), and when it is an

odd number, equation (3), in order to rationalize ty a-\- *Jb.

EXAMPLES.

(1) Find a multiplier to rationalize v/11 s/^7.

Employing equation (1), we have a=ll, b=7, and n=3 ; hence required

multiplier = ^"iP+ ^/11.7+ ty7~
2= 3/121 -f ^~77+ ^"49.

And,

11 * * 7= 4, a rational product.

(2) Rationalize the binomial surd

Here we have a=5, &=4, n=3, an odd number; hence by equation (3)

we have multiplier required, =<^25 v/20+^16; and, by multiplication,

(^54-^4)(v^25 </20-}-v'16)=5-}-4:=9= a rational number.

(3) What multiplier will render the denominator of the fraction 6 . 5 .

a rational quantity ?

(4) Change . .
Q into a fraction that shall have a rational denominator.

(5) Change ^ . 3 a
into a fraction that shall have a rational de-

nominator.

\/a-\-x-\- -<J a x

(6) Change into a fraction that shall have a rational de-
ya-\-x y a x

nominator-

ANSWERS.

(3)

(4)

(6)
a:

104. To extract the square root of a binomial surd.

Before commencing the investigation of the formula for the extraction of

the square root of a binomial surd, it will be necessary to premise two or three

lemmas.

Lemma 1. The square root of a quantity can not be partly rational and partly

irrational.

For, if v
/a=6+ V c

i then, by squaring, we have

a b^c
; therefore, v/c=- T

-
that is, an irrational equal to a rational quantity, which is absurd.
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Lemma 2. If ai /&=xi Vy be *& equation consisting of rational and ir-

rational quantities, then a=x, and -\/b= -\/y ; i. e., the rational ana irrational

parts of the two members of an equation must be separately equal.

For, if a be not equal to z, let a x=d ; then we have

=a x; but a x=d; therefore

-\/b=d, which is impossible ;

.*. a=x, and, taking away these equals, -\/6= ->Jy.

Lemma 3. If Va+ Vb=x-\-y, then -Jo. -\fb=x y; where x and y
are supposed to be one or both irrational quantities.

For, since a-\- -\fb=x*-\-y*-\-2xy ; and since x3 and y- are both rational,

2xy must be irrational. By Lemma 2, we have

.: a Vb=z*2xy+y*
and -\/a -\/b=x y.

Let it now be required to extract the square root of a-\- i/b.

Assume -\/a-\- -\/b=x-{-y ; then -/a i/b=z y

a i/b=x*+y* 2xy

.-. By addition, 2a =-2(jr
i
4-y

2
),

or a=x3
+y*.

Again, Ja+
Hence

b=x2
y^ or ^a-=x3

x*+y*=a
x3 y*= V'<& i=c, suppose.

Therefore, by addition and subtraction, we have

a c

2
2

+ c
^and =

Hence
)a-\-c a c

'

\a+c b-

(1)

where c=. -J a- 6 ; and, therefore, as b must be a perfect square ; and this

is the test by which we discover the possibility of the operation proposed.*

* When the quantity a- b is not a sqnare, the values of a and b are no longer rational ,

bat it is clear that the formulas (1) and (2) will still give true results. As, however, these

are more complicated than the original expressions themselves, they are rarely employed ;

yet, when -\/b is imaginary, the result merits attention.

In order to examine this case, change b into b2 ; a-^-\/b becomes a-\-b\/ 1. The re-

markable circumstance just alluded to is this, that the square root of a-}-b\/ 1 has the

same form as this quantity itself.

This is shown from the formula (1), for since e=-v/a ;
-{-i-, when b is changed into 1-.

the second member becomes a+Vai+l
>--\-

V 2

first radical is positive, and that under the second negative, since \Ar--J-4* u greater than
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EXAMPLES.

(1) What is the square root of 11+ T/72, or 11+ 6 -/2 ?

Here a=ll ; 6=72; c= -/a
2 b= -/121 72=7

2

(2) What is the square root of 23 8 \/ 7 ?

Here a=23; &=82X 7=448; c= / a* 6= V529 448=9

/<z+c la c

(3) What is the square root of 14 6 -/5 ? Ans. 3 -/&

(4) What is the square root of 18i 2V7 ? Ans. -y/Hi 'V
/ 7.

(5) What is the square root of 94+42 1/5 ? Ans. 7+ 3 -/5.

is V ;(6) To what is 'ynp+Qm? 2i-/np+mB
equal? Ans.

^1+V 16~30 V~ 1-(7) Simplify the expression\' 16+30 -^1+V 16~30 V 1- Ans. 10.

(8) To what is ^28+10-/3 equal? Ans. 5+ -y/3.

(9) \/Z>c+ 25 /& : &2+V&C

(10)

(11) What is the square root of 2 V 1 ? Ans. 1 V !

(12) What is the square root of 3 4 V 1 ? Ans. 2 V 1 .

^S-v/S+S-v/S 112+20 V12~
(13) What is square root of ^ . ,

3

Ans. (1+ -/2) . (5+ V3).

BINOMIAL THEOREM.

105. IT is manifest, from what has been said above, that algebraic polynomials

may be raised to any power merely by applying the rules of multiplication.

We can, however, in all cases obtain the desired result without having recourse

to this operation, which would frequently prove exceedingly tedious. When
a binomial quantity of the form x-\-a is raised to any power, the successive

terms are found in all cases to bear a certain relation to each other. This law,

when expressed generally in algebraic language, constitutes what is called the

"Binomial Theorem." It was discovered by Sir Isaac Newton, who seems

to have arrived at the general principle by examining the results of actual mul-

tiplication in a variety of particular cases, a method which we shall here pursue,

and give a rigorous demonstration of the proposition in a subsequent article of

this treatise.

o , representing the quantity under the first radical by as , and that under the second

by 3*., the expression takes the form a+/?-v/ 1
; hence

CL. E. D.
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Let us form the successive powers ofx+a by actual multiplication.

i -{-a

x +a
x-+ x a

+ za-j-a*

r-4-2xa4-a
3 ............... . . . 2d power.

r -j- a

4-
jrj+3x2a+
x + a

3d power.

4- x3a+
x4+4z3a+ 6o:-a3+ 4xa3

-\-a* ............ 4th power.
r a

a4- 6x3a2+ 4x-a3+ xa*

.r
5
+5x*a4- 10x30-+ 10x-a3+

.r a

5th power.

5x054.06
r64-6x

5
a4-15x*a

z
4-20x

3a34-15xa4- 6ora54-a
6 ...... 6th power.

x 4- a

6xaa-4-15x
4a34-20x

3a4
4-15x

::a5
4-6xa

6
4-a

7

J7

4- 7xa 4- 21x
5a2

4- 35x*a
3
4- 35r

3a4
4- 21x

2a5+ 7xa64-a
7 .... 7th power.

In order that these results may be more clearly exhibited to the eye, we
shall arrange them in a table.

TABLE OF THE POWERS OF X-\-a.

(x+a) x+a

(x+ay^+Zxa

a)
5 z34-3x

:!

a4-

bxa* +a5

(x+a 6xa5
4-a

6

(x+a 7xa* +a~

(x4-a)
8

ji

8
4-8x

7
a4-28r

6a3
4-56x

6a3 xa7
4- a

8
.

In the above table, the quantities in the left-hand column are called the ex-

pressions for a binomial raised to the first, second, third, Arc., power: the cor-
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responding quantities in the right-hand column are called the expansions, or

developments, of those in the left.

106. The developments of the successive powers of x a are precisely

the same with those of x-^-a, with this difference, that the signs of the terms

are alternately -j- and
; thus,

(x a)
5=x5 S^a+lOrV I0z2a3

+5a:a
4 a5

,

and so for all the others.

107. On considering the above table, we shall perceive that,

I. In each case the first term of the expansion is the first term of the bi-

nomial raised to the given power, and the last term of the expansion is the

second term of the binomial raised to the given power. Thus, in the expan-
sion of (x-\-a)* the first term is x4

, and the last term is a4
, and so for all the

other expansions.

II. The quantity a does not enter into the first term of the expansion, but

appears in the second term with the exponent unity. The powers of x de-

crease by unity, and the powers of a increase by unity in each successive

term. Thus, in the expansion of (x-j-a)
6 we have x6

, 3fa. r*a 3
, rsa3

, x^a4 ,

ra5
, a6

.

III. The coefficient of the first term is unity, and the coefficient of the

second term is, in every case, the exponent of the power to which the binomial

is to be raised. Thus, the coefficient of the second term of (x-\-df is 2, of

(x-\-a)
6 is 6, of (x-\-a)

7
is 7.

IV. The coefficient of any term after the second may be found by multiply-

ing the coefficient of the preceding term by the index of x in that term, and

dividing by the number of terms preceding the required term. Thus, in the

expansion of (x-\-a)* the coefficient of the second term is 4 ; this multiplied

by 3, the index of a: in that term, gives 12, which, when divided by 2, the num-

ber of terms preceding the third term, gives 6, the coefficient of the third term.

Again, 6, the coefficient of the third term multiplied by 2, the exponent of x

in that term, gives 12, which, when divided by 3, the number of terms pre-

ceding the fourth term, gives 4, the coefficient of the fourth term. So, also,

35, the coefficient of the fifth term in the expansion of (.r-j-0
r

> when multi-

plied by 3, the index of x in that term, gives 105, which, when divided by 5,

the number of terms preceding the sixth, gives 21, the coefficient of that

term.

By attending to the above observations we can always raise a binomial of

the form (x-\-a) to any required power, without the process of actual multi-

plication.

EXAMPLE I.

Raise x-\-a to the 9th power.

The first term is ...........
The second term is ..........

9X8
The third term is ........... zV= 3G.r7as

;

36X7
The fourth term is .......... - xGas= 8<lx*a3 ;
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The fifth term is

The sixth term is

The seventh term is

The eighth term is

The ninth term is

.

4

126X5

xsa4=l'26x*at
;

126x4
~:

o

84X3

ra5=126z*a6
;

x3a?= 84x3a6
;

I3a7=

36 X 2
x1as= 9x"a? ;

9X1
-jpza

9= ra.

a4+ 126x*a5+ 84x3a + SS^a7

a2 120x7a3+210x6o4 252x6a5+210x4a6 120

The tenth term is

Hence,

(x+ a)
9=

+9xa+a9
.

EXAMPLE II.

In like manner,

(x a)
10=x10 10z9a

i3^ 45x2a8 1 Oxa9+ a10
.

108. The labor of determining the coefficients may be much abridged by

attending to the following additional considerations :

V. The number of terms in the expanded binomial is always greater by

unity than the index of the binomial. Thus, the number of terms in (x+a)
4

is 4+1, or 5 ; in (x+a)
10 is 10+1, or 11.

VI. Hence, when the exponent is an even number, the number of terms in

the expansion will be odd, and it will be observed, on examining the examples

already given, that after we pass the middle term the coefficients are repeated
in a reverse order ; thus,

The coefficients of (x+a)
4 are 1, 4, 6, 4, 1.

The coefficients of (x+a)
6 are 1, 6, 15, 20, 15, 6, 1.

The coefficients of (x+a)
8 are 1, 8, 28, 56, 70, 56, 28, 8, 1.

VII. When the exponent is an odd number, the number of terms in the

expansion will be even, and there will be two middle terms, or two contiguous

terms, each of which is equally distant from the corresponding extremities of

the series ; in this case the coefficient of the two middle terms is the same,

and then the coefficients of the preceding terms are reproduced hi a reverse

order; thus,

The coefficients of (z-j-a)
3 are 1, 3, 3, 1.

The coefficients of (x+a)
5 are 1, 5, 10, 10, 5, 1.

The coefficients of (x+a)
7 are 1, 7, 21, 35,

3_5_,
21, 7, 1.

The coefficients of (x+a)
9 are 1, 9, 36, 84, 126, 126, 84, 36, 9, 1.

109. If the terms of the given binomial be affected with coefficients or ex-

ponents, they must be raised to the required powers, according to the princi-

ples already established for the involution of monomials
; thus.
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EXAMPLE HI.*

Raise (2r
3+5a2

)
to the 4th power.

The first term will be (2o?)
4 = 16.r12 ;

The second term will be .... 4(2x
3
)

3 X (5a
2
) =4x8x5z9a8

;

4X3
The third term will be. X (2.r

3
)
2 X (5a

2
)

2=6 X 4 X 25a,%< ;

6x2
The fourth term will be .... -

(2&)
1 X (5a

2
)
3 =4x2X 125ar3a6

,

o

4
The fifth term will be -(2.T

3
) X (5a

2
)
4 =625a8

;

EXAMPLE IV.*

In like manner,

(
3+ Sab Y= (a

3
)

9+ 9 (a
3
)
8 X (

Sab
) + 36 (a

3
)
7 X ( Sal )

2 + 84 (a
3
)

6 X ( 3aZ> f

+ 126 (a
3
)

5 X (3a&)
4+ 126(a

3
)
4 X ( Sab )

5+ 84(a
3
)

3 X ( Sab )

6

+ 36(a
3
)

2 X (3aZ)
7+9a3 X (3a&)

8+ (3a6)
9

=a27+27a25
fc + 324a23

Z>
2 + 2268a21 i3+ 10206a19 64+ 30618a17 65

+ 61236a16
fc
6
4-78732a

13
fc
7+59049a

u
Z
8
+19683a

9
ii)
9

.

110. We shall now proceed to exhibit the binomial theorem in a general

form. Let it be required to raise any binomial (a:+ a )
to t*16 Pwer represent-

ed by the general algebraic symbol n. Then, by the preceding principles, we

shall have

The first term ............... *" ;

The second term .............. nxD~la ;

n(n 1)
The third term ...... .

/

The fourth term ...

The fifth term

1<2

n(n l)(n 2)--
1.2.3

x a ;

n(n l)(n 2)(n 3)

.2.3.4

&c...... . ........... &c-

The last term ................ n
.

The whole number of terms will be n-\-l, and the coefficients be repeated

in a reverse order after the ( ^~VS or (o+l)
th

term, according as n is odd

or even ; moreover, the terms will all have the sign -f- , if the quantity to be

expanded be of the form x-\-a, and they will have the sign -|- an(i alter-

nately, if the quantity be of the form x a. Hence, generally,

(n l)(n 2)>

(x a)
n=:rn nxn~l

a-\

n(nl)(n2)--T^-^r-
Ja"-3

J...V.O

n(n 1)

* The best method of proceeding in these examples is to raise (y-\-z) to the -fourth and

ninth powers, and then,, in the expansions thus obtained, to substitute S*3 for y, and 5 2 for

z in the first, and a3 for y, and Sab for z in the second.
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In this last case, if n be an even number, the last term, being one of the odd

terms, will have the sign -{- ; and if n be an odd number, the last term, being

one of the even terms, will have the sign .

Both forms may be included in one by employing the double sign.

n(n 1) 8 , n(n l)(n 2)^
1.2 n>T3

If we make x and a each equal to 1, (x-|-a)
n becomes (1-4-1)", or 2, and the second mem-

ber reduces to its coefficients ; hence the sum of the coefficients in the binomial formula is

equal to the *& power of 2.

EXAMPLE V.

To exemplify the application of the theorem in this form, let it be required

to raise .r-j-a to the power 5.

Here we have n=5, n 1=4, n 2=3, &c.

Hence,
x is a* = x5

nx"-^ is 5x*a = 5x*a

n(n 1) . 5.4

1.2
" a

1.2
C

/ -I ,\ / f\\ f M O

r^ ^~3(f raV""
8

JL * / O 1 O

n(n l)(n 2)(n 3) 5.4.3.2
-X^-^a* ii rn+ nr/i*

1.2.3.4
'

.' ^l.Z.S.t

n(n l)(n 2)(n 3)(n 4) 5.4.3.2. 1" -xa? . is xtf xaf
1.2.3.4.5 1.2.3.4.5

Wtt

EXAMPLE VI.

Raise 5c2
2yz to the 4th power

Here,

"j

.-.x becomes (Sc
3
)
4 = 625C8

I

*

nx-1 a becomes 4(5c
3
)
3
x(2yz) =IQQOc*yz

n=4 r x -2^* becomes -^(5c
2
)
3
x(2^r)

:=

n(n l)(n 2) 4.3.2
^ ^ -x-3a? . . . becomes pr^(5c

3
)
1

4.3.2.1

.-. (Sc
3

2yz)
4=625c8

111. We have sometimes occasion to employ a particular term in the ex

pansion of a binomial, while the remainder of the series does not enter into our

calculations. Our labor will, in a case like this, be much abridged, if we can

at once determine the term sought, without reference either to those which

precede, or to those which follow it. This object wiD be attained by finding

what is called the general term of the series.

If we examine the general formula, we shall soon perceive that a certain

relation subsists between the coefficients and exponents of each term in the

expanded binomial, and the place .of the term hi the series ; thus,
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The first term is

rn
, which may be put under the form a:

n~1+1
;

The second term is

The third term is

n(n 1) n(n 3+2)_J-'-x
a îa't ---- n-

1.2
" "~

l.(3-l)
The fourth term is

n(n-l)(n-2) _n(n-l)(n- .

1.2.3 1.2. (4-1)
The fifth term is

)._ n(n-l)(n-2)(n-5+2) _. .

1.2. 3. (5-11.2.3.4 1.2. 3. (5-1)
The sixth term is

n(n !)( 2)(n 3)(n 4) n(n l)(n 2)(w 3)(n 6+2)---7-n Slftb^-' -.11 -1. 1 -ft.- 1

1.2.3.4.5 1.2. 3. 4. (6-1)

Observing the connection between the numerical quantities, it is manifest,

that if we designate the place of any term by the general symbol p, the p
l*

term is

n(n-l)(n-2)(n-3) ..... . ......... (n-p+ ^)

1.2.3.4 ............... (jp-~l)
J

This is called the general term, because by giving to p the values 1, 2, 3, 4,

......... we can obtain in succession the different terms of the series for (or+a)".

EXAMPLE VII.

Required the 7 th term of the expansion of (z+a)
12

.

Here = 12 > .. n _p+2=7, n p+l=6
p= 7 I p l= 6.

Substituting these values in the general expression, we find that the term

sought is

12.11.10.9.8.7

1.8.3.4.5.6^'* r 924z6a6 *

EXAMPLE VIII.

Required the 5th term of(2c
4 4/i

6
)

9
.

Here n=9, p=5, x=2c*, a=4/i5
;

.. n _p+2=6, n _p+l=5, p 1=4;
9.8.7.6

.-. the 5th term is (2C
4
)

5 X (4/i
5

)

4
, or 126 X 32 X 256c20A!0

.

1 . . u . 4

Since the second term of the proposed binomial has the sign , all the

even terms of the expansion will have the sign , and all the odd terms the

sign + ; therefore the 5th term is

+ 1032192c'J /i
20

.

EXAMPLE IX.

Required the middle term of the expansion of (x a)
18

.

Since the exponent is 18, the whole number of terms will be 19, and hence

* The operation here to be performed is best effected by canceling the factors.
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the middle term will be the 10th
; and since it is an even term, it will have the

sign ; hence it will be

18.17.16.15.14.13.12.11.10

-1.2.3.4.5.6.7.8.9**' r-

EXAMPLE X.

Required the third and the last terms of the expansion of 5

21
Ans. -^--r

5
*/
1 and 128w7

o

TO EXTRACT THE n" ROOT OF A NUMBER.

112. The n01
power of 10 is 1 with n ciphers, and the nP power of any

number below 10 must be less, and can, therefore, be composed of no more

than n figures. The n& power of 100 is 1 with 2n ciphers, and the n th
power

of any number between 10 and 100 can not, therefore, contain more than 2n

figures, nor less than n. For a like reason, the 71
th
power of three figures can

not contain more than 3, nor less than 2. That of four figures can not con-

tain more than -in, nor less than 3n, &c. The nlh root of a number being re-

quired, it is evident from the above that there will be as many figures in the

root as there are periods of n figures in the given number, counting from right

to left, and one more if any figures remain on the left. The root may be

divided into units and tens, and the 71
th
power of it, or the given number, will

be equal, according to the Binomial Theorem, to the ra
tb
power of the tens plus

n times the n 1 power of the tens into the units plus a number of other terms

which need not be considered. Tens have one cipher on the right, and hence

the nth
power of tens has n ciphers on the right ; the n right-hand significant

figures, therefore, make no part of the nth
power of the tens ; to find the tens

of the root, then, the nth root of those figures which remain, after rejecting n on

the right, must be sought by an independent operation ; but if there are more
than n of these remaining figures, the tens of the root are expressed by a

number containing more than one figure, which number may be separated into

its units and tens, the 71
th
power of the tens of which does not contain the

significant figures on the right of that number upon which the independent

operation is now performing, and in consequence these n figures are also re-

jected. After rejecting periods of n figures successively, beginning on the

right until there remains but one period and part or the whole of another

period on the left, let these be considered an independent number, its root will

contain two figures, tens and units ; the 71
th root of the tens is to be sought in

what is left after rejecting the right-hand period; the n 1 power of the

tens has n 1 ciphers on the right; so, also, has any multiple of this, and,

therefore, n times the nl power of the tens into the units; which last

quantity, therefore, is not to be sought in the n 1 right-hand significant

figures ; after subtracting the 71
th
power of the tens just found, only one figure

of the next period, therefore, is to be placed on the right of the remainder,
which is then divided by n times the n 1 power of the tens; the quotient
will not be exactly the units, for the dividend contains also a part of the other

terms of the power of the binomial which were not considered ; this quotient

may be greater than the units of the root, but never can be less ; it must be

diminished till the ra
th
power of the two figures found is equal to or less than
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the independent number under consideration. Annex now to this independent

number the next period on the right of it, and consider what is thus obtained

as a new independent number ; the two figures of the root already found will

be the tens of the root of the new number ; bringing down one figure of the

right-hand period of it to the remainder after subtracting the wth
power of the

two figures of the root just found from the first independent number, and

dividing by n times the n 1 power of the tens, now composed of two figures,

a third figure of the root is obtained ; proceeding in this manner, the entire root

of the given number will at length be extracted.*

EXAMPLES.

(1) V504321, 2366=8,921.

(2) V1164532, 07234.

(3) ^233416517309451.

(4) ^282429536481.

113. By employing the binomial theorem, we can raise any polynomial to

any power, without the process of actual multiplication.

For example, let it be required to raise x-{-a-\-b to the power 4.

Put

a+b =y;
Then,

(x+a+by=(x+y)*,
=x4

-{-<lx
3
y-\-6x'

2

y'*-{-4:xy
;i

-\-y
4
, or putting for y its value,

Expanding (a-j-i)
2
, (et-j-&)

3
' (a-}-b)

4
, by the binomial theorem, and per-

forming the multiplications indicated, we shall arrive at the expansion of

It is manifest that we may apply a similar process to any polynomial.

The following is a demonstration of a general formula for the

POWER OF A POLYNOMIAL.

In the expression

make x=b-\-c-{- d . . . the above power will be equal to (a-{-x)
m

, and by the

binomial theorem the term which contains a" in the development of this may
be written

1.2.3.4 ----mxanxm~a

1. 2. 3... ?iXL 2. 3... (m n)''

Making yc-\-d, . . . we have xm~n
=(i-r-7/)

m~n
, and developing this last power,

the term containing 6n/ may be put under the form

* If there be decimals in the given number, ciphers must be annexed, if necessary, to

make exact periods of decimals, on a principle similar to that explained in (Art. 90).

If the index of the root to be extracted be composed of factors, it can be extracted by
means of the successive roots, the degrees of which are expressed by these factors. For

if the Y/a
mnP be required, we have j/a"

lnP=an
P, i/rt

nP aP, and -j/P=a.
The best way to extract roots of numbers of a degree higher than the square is by means

of logarithms.

t This may be obtained from the ordinaiy form of the general term of the binomial

formula

m(m 1) (m
1.2.3 .... n

bv multiplying both numerator and denominator by 1 . 2 . 3 ... (m ).
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1.2.3.4 (m ra) X fc^y"*-*-"

1 . 2 '. 3 ...
' X 1 2 . 3 (m n

')

'

It is evident that if this quantity be put in the place of z""11 in the ex-

pression [a], the result will represent the assemblage of the terms which

contain ab a '
in the power of the given polynomial. This result, after can-

celing common factors, will be

1.2.3.4....mxa^n/
y
m~^n/

1.2.3...nxl.2.3...n'xl-2.3...(m n n')'
* J

Making z=d-\ we shall have
2/

m~M
'=(c+z)

m-n-*/

, and the term con-

taining cn
"

will be

1 .2 . 3. . .(m n n') X c""z â a-a'-'i"

1.2.3 n" X 1 2 . 3 (m n n' n")
'

substituting this expression for y
m--*' in

[fe],
we have

1 . 2 . 3 . . .m X a"b"'c"zm-"-n'-n"

1.2.3...nXl.2.3...n'Xl-2.3...n"Xl-2.3...(m n '

n")'

It is evident now, without carrying the reasoning farther, that if V be the

general term of the development of

(a+ft+c-f<*..>,
this term may be represented thus,

1.2.3.4....mXafen>c"...=
1.2.3...nXl.2.3...n'Xl-2.3...n"X..

n, n', n" . . . being any positive whole numbers at pleasure, subjected only to

the condition that their sum shall be equal to m. So that all the terms of the re-

quired development may be obtained by giving in this formula to n, n', n". . .

all the entire positive values which satisfy the condition

n-f-n'-|-n"... ,=m.

"When one of these numbers is made zero, V takes an iflusory form. If, for

example, n =0, the series 1 . 2 . 3 . . . n placed in the denominator is nonsensical,

because factors increasing from one will never present us with a factor zero.

To relieve this difficulty, let us recur to the general term [a] in the development
***

of (a-\-x)
m

, and observe that the hypothesis n=0 reduces it to .

1*<6.O...O
But the hypothesis n=0 ought to give in this development the term which
does not contain a, and this term is x. Then, in order that this term shall be

deduced from the formula [a], it is sufficient to consider the series 1 .2.3...n

as equivalent to 1 in this particular case of n= 0. The same observation

should be extended to the other series of factors contained in the denominator
of V, and then V will give, without any exception, ah

1

the terms of the power
of the polynomial a-\-b-\-c-\-, &c.

TO EXTRACT THE m> ROOT OP A POLYNOMIAL.

The problem is, having given a polynomial, P, which is the m'A power of
another polynomial, p, tofind the latter.

Let us consider the two polynomials as arranged according to the decreas-

ing exponents of sorna letter, x, and caD a, 6, c, .... the unknown terms of the

root^j. They must be such that, in raising a-j-i-j-c. . . to the power m, we
obtain all the terms which compose P. But if we imagine that we have
formed this power by successive multiplications, it is clear that, hi the result,
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the term in which x has the highest exponent is the mth
power of a ; then we

shall know the first term of the root sought, p, by extracting the m"' root of tht

first term of the given polynomial, P.

The first term of the root being found, it will be easy to obtain the second;

but I prefer to show at once how, when we know several successive terms of

the root setting out from the first, we can determine the term which comes

immediately after.

Let u represent the sum of the known terms, and v that of the unknown;
then ~P= (u+v)

m
, or, developing,

P=um -fmu
m-lv+ Jcum-*v*+ k'um~V -\- , &c .

I have not exhibited the composition of the coefficients k, &'.., this not

being necessary, as will appear. From this equality, by subtracting um from

both the equals, we obtain

P i-u
m=mum-1

v-}- Jcu-^-)- k'um~*tf-\- , &c.

The first of these equals, P um , is a quantity which we can calculate by

forming the mth
power of the known quantity u, and subtracting it from the

polynomial P. The second is a sum of products, by means of which we can

easily assign the composition of the first term of the remainder P Mm , and,

consequently, discover the first term of the unknown part, v.

First, if we develop um~l
, it is clear, by the rules of multiplication alone,

that the first term of the development, that is, the one which contains x, with

the highest exponent, will be am
~l

; then, if we call/ the first term of v, the

first term of the product mum
~lv will be mam~l

f. By a similar course of rea-

soning, we perceive that the first terms in the developments of the other prod-

ucts will be respectively kam~^f
3
, k'am

~sf3
, These terms, abstraction

being made of the coefficients,which have no influence upon the degree of or,

can be deduced from the term ma"1"1

/, by suppressing in it one or more fac-

tors equal to a, and replacing them by as many factors equal to/. But/ being

of a degree inferior to a with respect to x, these changes can give only terms

of a degree inferior to mam~l

f.* Then, after having subtracted from the given

polynomial P the mth
power of the part u of the root already found, the first

term of the remainder is equal to the product of m times the power m 1 of

the first term a of the root by the first of those terms which remain still to be

found. Therefore, dividing the first term of the remainder by m times the

power m 1 of the first term of the root, the quotient will be a new term of

this root. This conclusion furnishes the means of discovering successively aD

the terms of the root as soon as the first is known. To have the second term,

b, subtract from the given polynomial P the m tk

power of the first term of the

root, then divide the first term of the remainder by ma"1

; to have the thira

term, c, of the root, subtractfrom P the m"' power of a-f-b, then divide the first

term of this remainder by ma"1
"1

, and so on.

If in any part of the process, the remainder being arranged according to the

powers of or, its first term is not divisible by m times the m 1 power of the

first term of the root, the given polynomial will not have an exact root of the

degree m.

We may arrange according to the ascending powers of a letter, x, as was

* Thus, for example, if a contain af>, and/ contain x*, and m=lQ, then am~'/ will contain

58, am-sj2 wjH contain yp&, am~3
f^ %vill contain a;64 ,

and so on.
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remarked at (Art. 80, III.), when treating of the square root, and the above

observation will undergo the same modification as there stated.

It would be superfluous to speak of the case where the letter of arrangement,

.?, enters, with the same exponent, into several terms. The method of proceed-

ing in such a case has been already sufficiently indicated in previous articles.

EXAMPLES.

(1) Extract the 5th root of 32r5 SO^+SOx3 40j3+10z 1.

(2) Extract the 6th root of 729 2916x3
+4860.r

4 4320x6+2160z
8 576X10

+ 64*11
. Ans. 3 21s.

<3) Extract the fifth root of r-^+loar-
16 5j-I4+90^ls 60jr-10

+282ar-
8

252z~ + 505JT-* 496.r~2+ 495 465:2?

+275r SO^+lox8
.r
10

.

Ans. z--}-. 3 x3.

114. In the observations made upon the expansion of (z+a)
a

, we have sup-

posed n to be a positive integer. The binomial theorem, however, is applica-

ble, whatever may be the nature of the quantity n, whether it be positive or

negative, integral or fractional.* When n is a positive integer, the series con

sists of n+1 terms; in every other case the series never terminates, and the

development of (x-{-a)
a constitutes what is called an infinite series.

Before proceeding to consider this extension of the theorem, we may re-

mark, that hi all our reasoning* with regard to a quantity such as (x-{-a)
n
, we

may confine our attention to the more simple form (l-^-a)
n
, to which th

former may always be reduced. For,

.-. (*+<*)>=

=xn
(l-|--) > or z"(l-}-M)

n
, ifwe put -=u

< a n(n 1) a* n(n l)(n 2) a3

n(n l)(n 2)(n 3) a< >

1.2.3.4 -^+' &c
-$t

Suppose n=-, where r and s are any whole numbers whatever,

I r
Then (r-4-a)

n becomes (x-\-a)
s
, and substituting

- for n in the series,

r a s\s ) a" s\s )\s ) a3

A

?+' to '

I1.2.3.4
* A perfectly rigorous demonstration of the binomial theorem far anv exponent what-

ever, integral or fractional, positive or negative, will be found towards die close of this

treatise.

t This expansion may be obtained by substituting, in the general form (Art. 110), 1 for

a;, and for a.



H2

Or, reduced,

w
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r
_ r a r(rs) a? r(r~-s)(r2s)

^"l 1+--+!. 2.s2 "x5^" 1.2.3-s3

r(r s)(r 2s)(r 3s) a*

+ 1 . 2 . 3 . 4 . s4 'x4 "!"'
.

The binomial theorem, under this form, is extensively employed in analysis

for developing algebraic expressions in series.

EXAMPLE I.

Expand -/ar+a in a series.

Here r=l, s=2.

_j$ !.->) --')S-),
1.2 1.2.3 '.x-

3

SC-OQ-KM ..
i+ 1.2.3.4

' x^ )

C i
:

- - _- _-
|V \ L

2
*~

2 a2 2
X

2
X

2 a3

=za
(
1
"^"2

'

x"^" 1.2
'

x2 "^" 1.2.3
'

-r
3

1 1 3 _5 ^
2
X ~2 X ~2 X ~2 a*

+ 1.2.3.4 'x*+ S

la la2 1.3 a3 1.3.5

'2'x~"r2\4'x2^"l.2.3.8'x3 "~1.2.3.4.1fi

which last may be derived at once from [a], and put under the form

if la la2 1.3 a3 1.3.5 a4

x*

\
1+ 2

'

x~274
'

x3"^"2.4.6
'

o?"~2.4.6.8
'

x4

1 . 3 . 5 . 7 a5
)

j_ . . . &c >+ 2.4.6.8.10 x5 S

where/ the law of the series is evident.

EXAMPLE II.

Expand v/o
2 a2e

2 in a series.

x/a
2 a2e2=(a2 a2e2)^

=a(l en 2 Here, r=l, s=2, -= es

x
* f T/T\ A/AI/XX

i il __ i . ii 01

=|l-^.eM-
2

i. 2
~-'4~

1.2.3~

|

TT T72.3.4
-^&c--..-

5
X

a
l lt3

^
1.3.5

g^ ?
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EXAMPLE III.

m
Expand _. in a series.

m i

==m(6+c) *

if!' "" '
"*

1 / 1 \

-21-2- 1
) ca

2
"

fe
3 ' 1.2

'

b*

_i(_l_i) (_!_,) ^
i

~ x / \ <* i
f^

1.2.3
"

6

13 135
__ y V y ^_ .

Ic* 2 2c* 2 2 2

fc
3 ' 1.2 W* 1.2.31357

>e^ 1.2.3.4 i^r

1 c* 1 . 3 1.3.5 c )

which last expression might be derived immediately from formula [a]. The
same remark will apply in the following examples.

EXAMPLE IV.

n
Expand

'
in a series.

i/ c2c2\_ i a c3^
=n6

(l ^)
Here r=-l, ,=2, -=-^-

1 c 8
<i
8 2 \ 2 /c 2 e\

* 2
'

6 s
"

1.2
'

V b* )

~
2 V"^"" 1

) \~2~ 2
) /\*

1.2.3

1.2.3.4
n ce 1 .3 c 4 1.3.5
6 2

' T5
"

'

f . 4
* 1~ 2.4.6

'

1.3.5.7 cV+' + >flcc2.4.6.8' 6

H
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EXAMPLE V.

Expand in a series.

p+q

9

Here, r= 3, s=4,

a n5

x m3
'

4\ 4

* ) A
' m3\ 1 O

IH C ^ "^ * 3B

S/i.jV.J.^~4\ 4 VV 4 V /nV
1.2.3

'

\m3
/

(P + V) e n s 3Ji i i f 3 7i
6 3 7 ?i o . 7 . 1 1

i^ ^
J
'~4'm?^~1.2.4:*mP~1.2.3.#

7i
16 3 . 7 . 11 . 15 20

__I___
7n."

t"l.2.3.4.44m12

EXAMPLE VI.

EXAMPLE VII.

( 3
(c*_^=cOl-- -, &c. I

EXAMPLE VIII.

_ 3 Ji c
. 3 x . 3 . 13 z2

,
3 . 13 . 23

10 2 1.2. a2 '

103 1.2. 3. a7

+
3.13.23.33

104 1 . 2 . 3 . 4 . a

EXAMPLE IX.

_.. ..._
(1+x)^

5 SS.IO 5.10.15 5.10.15.20

EXAMPLE X.

The eleventh term of the series for (a
3 z3

)^ is
2618 a^

115. The binomial theorem is also employed to determine approximate

values of the roots of numbers.

In the formula



APPROXIMATE ROOTS OF NUMBERS. 115

Let us put n=-, the expression becomes (x-|~a)
r or Vx+ a' an^ we have

1.2 x 1.2.3
1 a 1 r 1 a* 1 r 1 2r 1 a3

, &C.
x r 2r Xs r 2r 3r x3

If we wished to form a new term, it would manifestly be obtained by mul-

3r 1 a
tiplying the fourth by

- and , then changing the sign, and so on for the

rest, the terms after the first being alternately positive and negative.

This being premised, let it be required to extract the cube root of 31. The

greatest cube contained in 31 is 27 ; in the above formula let us make r=3
r= -27, a=4, and we shall then have

V31= 3/27+ 4

_ iIi_l!LIi2 64 .

"*" 3
'

27~3
'

3
'

729+ 3 "3*9" 19683
~' '

_ 16 320
"*" 27

~~
2187 + 531441

""'

The succeeding term will be found by multiplying by . , or
*

4J*

2 4 2560-
. , and then changing the sign, which win give us

43045721'

In like manner, we shall find the next term by multiplying by

4r 1 a 2560 11 4 112640

-gjT-
-, it wifl, therefore, be

for any number of terms.

Let us, however, confine our attention to the first five terms of the series,

and reduce them to decimals ; we shaB have, for the sum of the additive terms,

3=3.00000 ^

27

320

1=0.14815
v= 14^

=0.00060
531441

And for the sum of the subtractive terms,

43046721
\

Hence

16

"2187=
--00731

2560 > =-0.00737.
=0.00006

a result which we shaU proceed to show is within 0.00001 of the truth.

116. When the expression for a number is expanded in a series of terms,

the numerical values ofwhich go on decreasing continually, we easily perceive
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that the greater the number of terms which we take, the more nearly shall we

approach to the real value of the proposed expression. Such a series is called

converging. If we suppose the terms of the series alternately positive and

negative, we can, upon stopping at any particular term, determine precisely
the degree of approximation at which we have arrived.

Let there be a series a b-\-c d-\-ef-\-g h-\-k l-\-m
---- composed

of an indefinite number of terms, in which we suppose that the quantities a,

fe, c, d go on diminishing in succession, and let us designate by N the number

represented by this series, we shall prove that the numerical value of N lies

between any two consecutive sums of any number of the terms of the above series.

For let us take any two consecutive sums, <

a b-\-c d-\-e /, and a b-\-c d-\-ef-^-g.

Upon consideiing the first of these, we perceive that the terms which foi-

low '/are -\-(g h)-^-(k 1)-\
------

; but since the series is a decreasing

one, the positive differences g h, It I, &c., are all positive numbers
;
hence

it follows that, in order to obtain the complete value of N, we must add to the

sum a 5-|-c d-\-e -/some positive number. Hence

ab+ c d+e /<N.
With regard to the second sum, the terms which follow -\-g are (h &),

_( m),
----

; but the partial differences, h k, I m, &c., are positive;

hence -

(h k), (I m)
----

, are all negative, and, therefore, in order to

obtain the complete value of N, we must subtract some positive number from

the sum a b-\-c d-\-e /-}-# Hence

and it has been shown that

ab+cd+ef <N;
therefore N lies between these two sums.

From this it follows that, since g is the numerical value of the difference

of these two sums, the error committed when we assume a certain number of
terms a b-\-c d-\-e ffor the value of N is numerically less than the term

which immediately follows that at which we stopped.

In the preceding example, all the terms after the first being alternately posi-

tive and negative, we may conclude that the numerical value of the first five

terms

S-U - 4-
32 2560

"

27 218/J 531441 ~43046721

differs from the true value of V^l by a quantity less than the value of the

sixth term, which was found to be equal to- -
; but this fraction is

I < 1 1 >.)!',,_'. H |, >

by mere inspection less than- , therefore, when we assume ths
100000

V~31=3.14138, the result is within 0.00001 of the truth.

117. From what has been said above it will be seen that, in order to obtair

an approximate value of the nth root of any number N by the method of series

we may make use of the following

RULE.

Resolve the given number N into two parts of theform p
n
+Q> where p" is the

highest n'A power contained in N, and in the development of (x-|-a)
B make

j
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x=pn
, a=q. The number of terms to be taken in the resulting series will

depend upon the degree of accuracy required, and can be determined by tiie

principle ju-st explained. Convert all the terms of which account is taken into

decimals, and then effect the reduction between the additive and subtractice

terms.

q
This method can not be employed with advantage except when is a small

fraction ; for unless this be the case, the terms of the series will not diminish

with sufficient rapidity, and it will be necessary to take account of a great

number of terms in order to arrive at a near approximation.

It may happen thatpa
\& <^q ; we must then modify the above process, ior

pn a a
then or - is greater than unity, and therefore all the powers of - will in

crease in numerical value as the degree of the power increases.

Suppose, for example, that the cube root of 56 is sought, 27 being the

greatest cube contained in 56, we shall have

a 29
x=27, a=29 and .-. -= ,x 27

and the terms of the series win go on increasing instead of diminishing (we do

not speak of the coefficients, which are fractions differing but little from unity).
ft 1

But we may resolve 56 into 64 8, or 4s 8 ; but , or -, is a small fraction.
64 8

On the other hand, if we substitute a for a in the expression for V^+ a i

we have

1 a 1 n 1 a* 1 n 1 2n 1 a3

n x n 2n i8 n 2n 3 a?

If we put x=64, a=8, we shall obtain a series of terms which will de-

crease with great rapidity.

Here all the terms, with the exception of the first, are negative, and we can

not apply to this series the criterion established in (Art. 116) for fixing the de-

gree of approximation. But we shall approach very nearly to the required

degree of approximation if we take into account such a number of terms that

the first which we neglect shall be less, by one tenth, for example, than the

decimal place to which we wish to limit the approximation.
The student may take the following examples as exercises :

(1) V39 = V32 +7 =2.0807 true to 0.0001.

(2) 3/65 = V64 +1 =4.02073 . . . true to 0.00001.

(3) #260= V256 -J-4 =4.01553! . . true to 0.00001.

(4) Vl08= V123 20=1.95204 . . . true to 0.00001.

118. Roots of imaginary expressions of the form ab-\/ 1 are extracted
i

by putting the expression under the form (ai b V l)
n
, and developing by the

binomial theorem ; a series of terms will thus be obtained, which may be put
under the form A-f-B -y/ 1, A representing the algebraic sum of the rational

terms, and B the algebraic sum of the coefficients of -/ 1. Algebra fur-

nishes no other general method for this transformation, but when n is a power
of 2, it can be effected without the aid of series.
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f~Let us consider, first, the two radicals "y a-{-b -/ 1

Placin

and a & !

[1] o.+iV^l+V^ 6-/=l=z

[2] -ya+ i-/ l\ab^~i=y,
and squaring both, there results

Whatever may be the sign of a, the value of x2
is positive, but that of y

2
is

negative. From these equalities we derive

[3] z=V 2a+ 2 Va2+&3
, 2/=W 2

But the equalities [] 1 and [2] give

Then, finally, putting for x and y the values [3], we shall have

~l=
^20+2 V^T^[4] a

[5] a-& V"=T=

Now, if we consider the radical expressions

^V*:i*V--li V
we observe that the extraction of a single root which is some power of two,

can be replaced by successive extractions of the square root; consequently,

the repetition of the formulas [4] and [5] will always reduce the above ex-

pressions to expressions of the form AiB -\f 1.

REMARK. In each of these formulas the first member, by reason of the

radicals which it contains, may have four different values, and the same is

true of the second member. In both, the four values of the first member are

the same, and this is the case evidently with the second member; so that

the two formulas make really but one. They present no difference except

when we use them simultaneously in the same algebraical calculation, because

then we ought to regard the terms into which / 1 enters as affected with

contrary signs. But then it is necessary to remark besides, that, by the very

manner in which we have arrived at these formulas, -/ a
'2+^2 m them repre-

sents the product of "y a-\-l -/ 1 V a~ & V 1 ? consequently, the deten:

inations of these two radicals ought always to be supposed associated in such

a manner that their product should have the sign which is given to v/a
2
-}-6

:

in the second member. Without attention to this the formulas might lead to

false results.
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Another remark of importance may be added here.

The methods of proceeding in certain operations upon imaginary expressions,

exhibited at (Art. 66), were suited to the restrictions which in ordinary cases

would be understood as pertaining to the radical sign. If, however, this sign

have its most general signification, it must be used in its ambiguous sense,

that is, as having J: before it. Then / aX V would have a more ex-

tended sense than simply the square of / a. It would have, in fact, four

values,

+ V a X + V a, VaX + Va, + V aX V
V aX V a,

or

a, -fa, + a, a

These four, in fact, amount to but two, -fa and a, which are the values

obtained by the ordinary rule of multiplication, -/ ax V a= /#"= ia.
If the quantities under the radical are different, the reasoning will be a little

varied. Let the product be required of

VaX V b*

The first of these factors V a may be put under the form a'V 1 and

the second under the form b' V 1. The product will then be expressed by

a'l' V^l X V^l"-
But after what has just been said, if there be no restriction in the meaning

of the sign -\f , we have V IX V l= il- Hence

But since the square of a'b' is a'26'2 , or ai, we have a'b'= -^ab, and, there-

fore,

the result which we should obtain by the ordinaiy rule for the multiplica-

tion of radicals. We thus perceive that this rule gives us the true product
in its most general form when there is no restriction in the sense of the radi-

cal sign.

RATIOS AND PROPORTION.

119. NUMBERS may be compared in two ways.
When it is required to determine by bow much one number is greater or

less than another, the answer to this question consists in stating the difference

between these two numbers. This difference is called the Arithmetical Ratio

of the two numbers. Thus, the arithmetical ratio of 9 to 7 is 9 7, or 2, and

if a, 6 designate two numbers, their arithmetical ratio is represented by a b.

When it is required to determine how many times one number contains, or

is contained in another, the answer to this question consists in stating the

quotient which arises from dividing one of these numbers by the other. This

quotient is called the Geometrical Ratio of the two numbers. The term

Ratio, when used without any qualification, is always understood to signify a

geometrical ratio, and we shall, at present, confine our attention to ratios of

this description.
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120. By the ratio of two numbers, then, we mean the quotient which arises

from dividing one of these numbers by the other. Thus, the ratio of 12 to 4

12 5 1
is represented by or 3, the ratio of 5 to 2 is - or 2.5, the ratio of 1 to 3 is -

4 o

or .333 . . . We here perceive that the value of a ratio can not always be ex-

pressed exactly, except in the form of a vulgar fraction, but that, by taking a

sufficient number of terms of the decimal, we can approach as nearly as we

please to the true value.

121. If a, b designate two numbers, the ratio of a to b is the quotient

a
arising from dividing a by b, and will be represented by writing them a : i, or r-

122. A ratio being thus expressed, the first term, or a, is called the ante-

cedent of the ratio ; the last term, or b, is called the consequent of the ratio.

123. It appears, therefore, that, in arithmetic and algebra, the theory of

ratios becomes identified with the theory of fractions, and a ratio may be de-

fined as a fraction whose numerator is the antecedent, and whose denominator

is the consequent of the ratio.

124. When the antecedent of a ratio is greater than the consequent, the

ratio is called a ratio of greater inequality ; when the antecedent is less than

the consequent, it is called a ratio of less inequality ; and when the antecedent

12
and consequent are equal, it is called a ratio of equality. Thus, is a ratio

12 3
of greater inequality, r - is a ratio of less inequality,

- or 1 is a ratio of

equality. It is manifest that a ratio of equality may always be represented by

unity.

125. When the antecedents of two or more ratios are multiplied together

to form a new antecedent, and their consequents multiplied together to form

a new consequent, the several ratios are said to be compounded, and the re-

, a
suiting ratio is called the sum of the compounding ratios. Thus, the ratio T

c

is compounded with the ratio -, by multiplying the antecedents a, c for a new

antecedent, and the consequents b, d for a new consequent, and the resulting

ac a c

ratio T-? is called the sum of the ratios r and -3.
bd b a

m p r t

In like manner, the ratios , -, -, are compounded by multiplying all

the antecedents together for a new antecedent, and all the consequents for a

mprt
new consequent, and the resulting ratio, , is called the sum of the ratios

mprt
TI'

</'
5' w'

126. When a ratio is compounded with itself the resulting ratio is called the

duplicate ratio, or double ratio of the primitive. Thus, if we compound the

a a a2
a,

ratio T with p the resulting ratio, TJ,
is called the duplicate ratio of r-

a3 a
Similarly, TJ is called the triplicate ratio, or triple ratio

ofj-.
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a* a
.And, generally, j-

is called the sum of the n ratios T.

cF
According to the same principle, the ratio is called the subduplicate ratio,

s*

1 -L J
a a2 a 2 a 2 a

or half ratio of -r / for the duplicate ratio of is XT=T-
I* 62 &?

aV
So, also, the ratio is caDed the subtriplicate ratio, or one third of the ratu>

b*

.a a* a5 a* a? a
of r. For the triple ratio of is X X ~T=T

fl c*

And, in general, is called one n* of the ratio r " for n times the ratio

6"1111
a" . a? an a" a

is X X X to n terms =r%
fc" 6 6 fe

3.

a 3 fl

NOTE. The ratio 5
is called the sesquiplicate ratio of

y-,
for it is com-

pounded of the simple and subduplicate ratio ; thus, Xr= 5-

127. If the terms of a ratio be both multiplied, or both divided, by the same

quantity, the value of the ratio remains unchanged.

The ratio of a to b is represented by the fraction 7 ; and since the value of

a fraction is not changed, if we multiply, or divide, both numerator and de-

nominator by the same quantity, the truth of the proposition is evident. Thus,

a

5=^=1, or a :b=ma :mb=-:-.
b mb b n ik

n

128. Ratios are compared with each other by reducing the fractions, by
which they are represented, to a common denominator.

If we wish to ascertain whether the ratio of 2 to 7 is greater or less than

2 3
that of 3 to 8, since these ratios are represented by the fractions - and -,

7 8

which are equivalent to and ; and since the latter of these is greater than

the former, it appears that the ratio of 2 to 7 is less than the ratio of 3 to 8.

129. A ratio of greater inequality is diminished, and a ratio of a less inequal-

ity is increased, by adding the same quantity to both terms.
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Let .r represent any ratio, and let x be added to each of its terms. The

two ratios will then be

a a-\-x

J? &+*'
which, reduced to a common denominator, become

ab-\-ax ab-^-bx

x)' b(b+x)'

If a^>b, i. e., if T be a ratio of greater inequality, then

db-\-ax ab-\-bx

b(b+x)-
>

b(b-\-x)
;

and .. r is diminished by the addition of the same quantity to each of its terms.

Again, if a<^b, i. e., if r be a ratio of less inequality, then

db-\-ax ab-\-bx

b(b+x)<b(b+x)
;

a
and .. T is increased by the addition of the same quantity to each of its terms.

130. If there be any number of ratios in which the consequent of the first ratio

is the antecedent of the second, and the consequent of the second the antecedent

of the third, and so on, the sum of any number of said ratios is the ratio of the

first antecedent to the last consequent.

Let the proposed ratios be

. abode
&'"c'5'?/'~~

Then, by (Art. 125), their sum is

a b c d e

6
X 7X 5 X 7X7""'

or

abcde ----

bcdef
'

a
i. e.,

j.

131. Proportion is an equality of ratios.

Thus, if a, b, c, d be four quantities, such that a, when divided by b, gives the

same quotient as c when divided by d, then a, b, c, d are said to be in propor-

tion, or to be proportionals ; the numbers 20, 5, 36, 9 are proportionals, for

20 36
-=4,and T =4.

When four quantities are proportionals, it is usually enunciated by saying

that the first is to the second as ttie third is to the fourOi. Thus, if a, 6, c, d are

proportionals, we say that a is to i as c is to d, and this is expressed by wri-

ting them

a:b::c:d, ora:b=c:d,
or as fractions,

a c ,



RATIOS AND PROPORTION. 123

The first or second form of notation is usually employed in geometry, the

last in analytical investigations. The signs : : and = have precisely the same

meaning. The sign : is the sign of division.

a c
132. The expression a : b : : c : d, or r =-j, is called a proportion, and a, b, c, d

are severally called the terms of the proportion. The first and last are called

the extreme terms, the second and third the mean terms. The first term is

called the/ rst antecedent, the second term \hejirst consequent, the third term

the second antecedent, and the fourth term the second consequent.

133. When the second and third terms of a proportion are identical, the

quantity which forms these terms is called a mean proportional between the

other two ; thus, if we have three quantities a, b, c, such that

,. , a. b
a:b::b:c, or r=~

then b is said to be a mean proportional to a and c, and c is called a third pro-

portional to a and b.

If, in a series of proportional magnitudes, each consequent be identical with

the next antecedent, these quantities are said to be in continued proportion ;

thus, if we have a series of quantities, a, b, c, d, e.f, g, h, such that

a:b::b:c::c:d::d:e::e:f::f:g::g:h,

a b c d e f g
b c d e J g h'

then the quantities a, b, c, d, e,f, g, h are in continued proportion.

A continued proportion is called a progression.

The following are the most important propositions connected with the sub-

ject of proportion.

I. Iffour quantities be proportionals, the product of the extreme terms will be

equal to the product of the mean terms.

Let

a:b::c:d,

or

a c

b
=

d'

Multiplying these equals by bd, th* expression becomes

ad=bc.

II. Conversely, If the product of any two quantities be equal to the product

oj any other two, these four quantities will constitute a proportion, the terms of
one of the products being the means, and the terms of the other the extremes.

Let

ad=bc.

Dividing these equals by bd, the expression becomes

a c c a

b
=
dt0r d

=
b

;

i.e., a:b::c:d, or c: d::a:b.

In the first, a and b are the extremes, and b and c the means ; in the second,

b and c are the extremes, and a and d the means.

III. If three quantities be in continued proportion, the product of the extreme

terms is equal to the square of the mean.
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This follows immediately from I.
; for let a, fe, c be three quantities in con-

tinued proportion, then

, ,
a b

a:b::b:c, or r=-
b c

.-. ac=b Xfe by I.

= fe
s
,
or fe= \/ac.

IV. Conversely, If the product of any two quantities be equal to the square

of a third, the last quantity will be a mean proportional between the other two.

Thus, if ac=fe2
,
b is a mean proportional between a and c ; for, since

ac=fe2
,

dividing these equals by fee,

a b
-= -, or a:b: :o:c.
b c

V. Quantities which have the same ratio to the same quantity are equal to

one another, and those to which the same quantity has the same ratio are equal

to one another.

First, let a and fe have the same ratio to the same quantity c, then a=fe.

Since

a : c : : b : c,

or

a_b
c~ c

;

multiply these equals by c .. a=b.

Again, let c have the same ratio to each of the quantities a and b, then a=fe.

Since

c:a::c:b,

or

c c

a~b'

dividing these equals by c,

1_1
a~b

aib'.'.xiy )

, > Then a : fe : : c : d.
c:d::x:y)

VI. Ratios that are equal to the same %re equal to one another.

Let

And
This is an axiom.

VII. Iffour quantities be proportionals, they will be proportionals c<lso alter-

nando, that is, the first will have the same ratio to the third that the secc-nd has

to the fourth.

Let a : b : : c : d, then, also, a : c : : fe : d.

a c
Since T=-J. divide each of these equals by c, and multiply each by fe.

a b
Then -=

5 ; i. e., a:c::b: d.

VIII. If four quantities be proportionals, they will be proportionals also

invertendo, that is, the second will have to the first the same ratio that the

fourtfi has to the third.
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Let aibucid, then, also, biandic.

a c
Since T=~7 divide unity by each of these equals.

We have

or

b d
-=. ; i. e.
a c

IX. Iffour quantities be proportionals, they will be proportionals also com-

ponendo, that is, the first, together with the second, will have to the second the

same ratio that the third, together with thefourth, has to thefourth.

Let aibucid, then, also, a-\-bibnc-^-did.
a c

Since T=~;> add 1 to each of these equals, then
o d

a c

*+i=;7+ 1 >

or

c-f 6 c+d=-T-; i. e., a-\-b:b::c-\-d:d.

X. Iffour quantities be proportionals, they will be proportionals also divi-

dendo, that is, the difference of the first and second will have to the second the

same ratio that the difference of the third andfourth has to the fourth.

Let aibucid, then, also, a bibnc did.

CL C
Since 7= ^' subtract unity from each of these equals, then

a b cd
r r= j~ ; i. e., a b:b::c did.
o a

XL Iffour quantities be proportionals, they will be proportionals also con-

vertendo, that is, the first will have to Ike difference of the first and second the

same ratio that the third has to the difference of the third andfourth.
Let aibucid, then, also, aia bucic d.

Since T=JI then, by prop. VIII., -=- ; and hence, subtracting these equal

Quantities from unity,

b

or

a b c d

or

e= -j; i. e., a:a bucic d.
a b cd
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XII. Iffour quantities be proportionals, the sum of the first and second will

have to their difference the same ratio that the sum of the third and fourth ha*

to their difference.

Let a:b::c:d, then, also, a+b:a b::c+d:c d.

a c
Since 7= j. we have,

by prop. IX.,

b

a+b c+d

a I c d
and, by prop. X., 7 = -7 >

dividing these equals by each other,

a+b c+d

a b c d

~T~ ~J~
or

a+b c+d- =-%; i. e., a+b:a b::c+d:c a.
a b c a

XIII. If there be any number of quantities more than two, and as many
others, which, taken two and two in order, are proportionals (ex aequali), the

first will have to the last of the first rank the same ratio that the first of the

second rank has to the last.

Let

a, b, c, d .... be any number of quantities,

and

>/ gi & .... as many others.

Let
a:b ::e :f \

b:c ::f :g > Then, also, a:d::e:h.

c :d::g:hj

For, since

multiplying the first column together, and also the second,

abc efg

bcd-fgh'
or

a e

-J'^T ; i. e., a:a::e:n.

XIV. If there be any number of quantities more than two, and as many
others, which, taken two and two in a cross order, are proportionals (ex aequali

perturbat&), the first will have to the last of the first rank the same ratio that the

first of the second rank has to the last.
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Let
a, b, c, d . . . . be any number of quantities,

and

e,/, g, h .... as many others.

Let

a:b ::g:h }

b:c ::f:g > Then, also, a:d::c:h.
c : d : : e :/ )

For, since

g
b
=
h

c g
c e

d=~f
abc gfe
~bcd
=

7igf
or

a e j j.

-j=r; i. e., a:d::c:h.
a ft

XV. Iffour quantities be proportionals, any powers or roots of these quan-
tities witt also be proportionals.

Let a:b::c:d; then, also, aa :ba ::cu :d.

Since

a c /a\
B

/ c\*
r=-j, raising each of these equals to the nth power, (rj =(-jI,

where n may be either integral or fractional.*

XVI. If there be any number ofproportional quantities, the first will have to

the second the same ratio that the sum of all the antecedents has to the sum of
all the consequents.

Let a, 6, c, d, ,/, g, h be any number of proportional quantities, such that

a:b::c:d::e:f::g:h.
Then

a:b::a+c+e+g:b+d+f+h.
Since

a__c__ e__S
b-d-f-h'

we have

ab=ba
ad=bc

af=be
ah=bg,

and *. a(b+d+f+h)=b(a+c+e+g)
a q+c+e+g

'

b-b+d+f+h
or a:l::a+c+e+g:b+d+f+h.
* The ratio of the resulting proportion is the n* power of the ratio of the given proportion.
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XVII. If three quantities be in continued proportion, the first wiU have to

the third the duplicate ratio of that which it has to the second.

Let a : b : : b : c, then a : c : : a2
: 6*.

Since

a b a
T=-, multiply each of these equals by r ; then

XVIII. If four quantities be in continued proportion, the first will have to

thefourth the triplicate ratio of that which it has to the second.

Let a, b, c, d be four quantities in continued proportion, so that

a:b::b:c::c:d ; then, also, a : d : : a3
: b3

.

Since

a b c

T=-=-J, we haveoca

a c

b
=
d

i

a a

b~b'

Multiplying these equals together,

a 3 bca

p=j! i- e., a:d::a*:bs
.

XIX. If two proportions be multiplied together, term by term, the products
willform a proportion.

Let a:b :: c :d,

and e:f::g:h;
then ae : bf: : eg : dh,

a c e g
for -^-and-^-,

hence, multiplying equals,

ae eg -

The compatibility of any change in the order of the terms of a proportion

may be tested by forming the product of the extremes and means in both the

original and changed proportion, when, if they agree, the change is correct

Thus, a:b::c:d may be written d:b::c:a, for we have ad=bc in both.

EXAMPLES IN PROPORTION.

(1) The mercurial barometer stands at a height of 30 inches, and the specific

gravity of quicksilver is 13f$. How high would a water barometer stand ?

Ans. 33 feet 11| inches.

(2) The weights of a lever have the same ratio as the lengths of the oppo
site arms. The ratio of the weights is 5, and the longer arm 10 inches

What is the length of the shorter arm ? Ans. 2 inches.

* The ratio of the resulting proportion is the product of the ratios of the two given pro-

portions.



EQUATIONS. 129

(3) The weights of a lever are 6 and 8 pounds, and the length of the shorter

arm 18 inches. What is that of the longer ? Ans. 24 inches.

(4) At the end of an arm of a lever 5 inches long, what weight can be sup-

ported by 2J pounds acting at the end of an arm 4| inches long?
Ans. 2/j pounds.

(5) Triangles are to each other as the products of then- bases by their alti-

tudes. The bases of two triangles are to each other as 17 and 18, and their,

altitudes as 21 and 23. What is the ratio of the triangles themselves ?

Ans. 119:138.

(6) The force of gravitation is inversely as the square of the distance. At

the distance 1 from the centre of the earth this force is expressed by the

number 32.16. By what is it expressed at the distance 60 ?

Ans. 0.0089.

(7) The motion of a planet about the sun for a short space is proportional

to unity divided by the duplicate of the distance. If the motion be represented

by v when the distance is r, by what will it be expressed when the distance is r
7
?

i*v
Ans. .

(8) The times of revolution of the planets about the sun are in the sesquipli-

cate ratio of their mean distances. The mean distance of the earth from the

sun being expressed by 1, that of Jupiter will be 5.202776 ; the time of revolu-

tion of the earth is 365.2563835 days. What is the time of revolution of

Jupiter? Ans. 4332.5848212 days.

EQUATIONS.
PRELIMINARY REMARKS.

134. Ait equation, in the most general acceptation of the term, is composed
of two algebraic expressions which are equal to each other, connected by the

sign of equality.

Thus, ax=b,cx*-\-dx=e,cx*-\-gx'
l
=hx-\-'kt mxt

-\-nr
i

-{-pz
5
+qx-\-r=Q,are

equations.

The two quantities separated by the sign = are called the members of the

equation, the quantity to the left of the sign = is called the first member, the

quantity to the right the second member. The quantities separated by the

signs -|- and are called the terms of the equation.

135. Equations are usually composed of certain quantities which are known

and given, and others which are unknown. The known quantities are in

general represented either by numbers, or by the first letters in the alphabet,

a, bj c, &c. ; the unknown quantities by the last letters, s, t, x, y, z, &c.

136. Equations are of different kinds.

1. An equation may be such that one of the members is a repetition of the

other; as, 2x 5=2r 5.

2. One member may be merely the result of certain operations indicated

in the other member; as, 5x+I6=sWx-5 (bx 21), (x+y)(x yjssi
8

y*r

z3 t
3
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3. All the quantities in each member may be known and given ; as, 25=10

+ 15, a+ b=c d, in which, if we substitute for a, b, c, d the known quan-

tities which they represent, the equality subsisting between the two members

will be self-evident.

In each of the above cases the equation is called an identical equation.

4 . Finally, the equation may contain both known and unknown quantities,

and be such that the equality subsisting between the two members can not be

mrade manifest, until we substitute for the unknown quantity or quantities cer-

tain other numbers, the value of which depends upon the known numbers

which enter into the equation. The discovery of these unknown numbers

constitutes what is called the solution of the equation.

When found and put in the place of the letters which represent them,

if they make the equality of the two members evident, the equation is said to

be verified, or satisfied.

The word equation, when used without any qualification, is always under-

stood to signify an equation of this last species ; and these alone are the objects

of our present investigations.

2+4=7 is an equation properly so called, for it contains an unknown

quantity x, combined with other quantities which are known and given, and

the equality subsisting between the two members of the equation can not be

made manifest until we find a value for x, such that, when added to 4, the

result will be equal to 7. This condition will be satisfied if we make x=3;
and this value of x being determined, the equation is solved.

The value of the unknown quantity thus discovered is called the root of the

equation, being the radix out of which the equation is formed ; the term root

here has a different sense from that in which we have hitherto used it, viz.,

that of the base of a power.

137. Equations are divided into degrees according to the highest power of

the unknown quantity which they contain. Those which involve the simple
or first power only of the unknown quantity are called simple equations, or

equations of the first degree ; those into which the square of the unknown

quantity enters are called quadratic equations, or equations of the second de-

gree : so we have cubic equations, or equations of the third degree ; biquad-
ratic equations, or equations of the fourth degree ; equations of ihefiflh, sixth,

n"1

degree. Thus,

ax -j-6 =cx-\-d is a simple equation.
4x2 2x =5 x* is a quadratic equation.

x*-\-px'
2=2q is a cubic equation.

xv
-\-px

a~l

-\-qx
n~2

-\-, &c., =r, is an equation of the 71
th

degree.

138. Numerical equations are those which contain numbers only, in addition

to the unknown quantities. Thus, xs-\-5x'*=3x-{-17 and 4x=7y are numer-
ical equations.

139. Literal equations are those in which the known quantities are repre-
sented by letters only, or by both letters and numbers. Thus, x^-{-px^-\-qx=.r,
x4

3px
s
y-\-5qx'

2

y'
i

-\-rxy
s=:5 are literal equations.

140. Let us now pass on to consider the solution of equations, it being under-

stood that to solve an equation is to find the value of the unknown quantity, or

tofind a number which, when substitutedfor the unknown quantity in the equa-
tion, renders the first member identical with the second.
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The difficulty of solving equations depends upon the degree of die equations

and the number of unknown quantities. We first consider the most simple

case.

ON THE SOLUTION OF SIMPLE EQUATIONS CONTAINING ONE UN-
KNOWN QUANTITY.

141. The various operations which we perform upon equations, in order to

arrive at the value of the unknown quantities, are founded upon the following

axioms :

If to two equal quantities the same quantity be added, the sums will be equal.

Iffrom two equal quantities the same quantity be subtracted, the remainders

unll be equal.

If two equal quantities be multiplied by the same quantity, the products u~ill

be equal.

If two equal quantities be divided by the same quantity, the quotients will be

equal.

These axioms, when applied to the two equal quantities which constitute

the two members of every equation, win enable us to deduce from them new

equations, which are all satisfied by the same value of the unknown quantity,
and which will lead us to discover that value.

142. The unknown quantity may be combined with the known quantities in

the given equation by the operations of addition, subtraction, multiplication,

and division. We shall consider these different cases in succession.

T. Let it be required to solve the equation

x+a= b.

If, from the two equal quantities x-\-a and b, we subtract the same quantity

a, the remainders will be equal, and we shall have

x-\-a a=b a,

or

x=b a, the value of x required.

So, also, in the equation

z+6=24.
Subtracting 6 from each of the equal quantities x-f-6 and 24, the result is

x=24 6

=18, the value of a: required.

II. Let the equation be

x a=b.

If, to the two equal quantities x a and b, the same quantity a be added,
the sums will be equal ; then we have

x a-\-a=b+a,
or

x=zb-{-a, the value of x required.

So, also, in the equation

x 6=24.

Adding 6 to each of these equal quantities, the result is

x=24+6
=30, the value of x required.

It follows from (I.) and (II.) that
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We may transpose any term of an equationfrom one member to the other by

changing the sign of that term.*

We may change the signs of every term in each member of the equation with

out altering the value of the expression.}

If the same quantity appear in each member of the equation affected with th

same sign, it may be suppressed.

Ill Let the equation be

ax=b.

Dividing each of these equals by a, the result is

b

x=-, the value of x required.a

So, also, in the equation

6z=24.

Dividing each of these equals by 6, the result is

x=4, the value of x required.

From this it follows that,

When one member of an equation contains the unknown quantity alone,

affected with a coefficient, and the other member contains known quantities only,
the value of the unknown quantity is found by dividing each member of the

equation by the coefficient of the unknown quantity

IV. Let the equation be

?=;.
a

Multiplying each of these equals by a, the result is

x=ab, the value of x required.

So, also, in the equation

!=-
Multiplying each of these equals by 6, the result is

z=144.

From this it follows that,

When one member of the equation contains the unknown quantity alone, di-

vided by a known quantity, and the other member contains known quantities

only, tfie value of the unknown quantity is found by multiplying each member

of the equation by the quantity which is the divisor of the unknown quantity.

V. Let the equation be

ax dx m

In order to solve this equation, we must clear it of fractions ; to effect this,

reduce the fractions to equivalent ones, having a common denominator (Art.

41), the equation becomes

aenx been bdnx bem

ben ben ben ben
'

Multiply these equal quantities by the same quantity ben, or, which is evi-

* If we transpose a plus term, it subtracts this term from both members ;
and if we

transpose a minus term, it adds this term to both.

t This is, in fact, the same thing as transposing every term in each member of the equa

tion, or multiplying throughout by 1,
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dently the same thing, suppress the denominator ben in each of the fractions,

the result is

aenx bcen=bdnx 6cm, an equation clear of fractions.

So, also, in the equation

2z 3

Reducing the fractions to a common denominator

40z 45_ 660 12z

W~
60
=

"60"~'""60"'

Multiplying both members of the equation by 60, the result is

40z 45=660-f-12r, an equation clear of fractions.

If the denominators have common factors, we can simplify the above opera-

tion by reducing them to their least common denominator, which is done (see

Art. 44) by finding the least common multiple of the denominators. Thus, in

the equation

5r 4z _7 13z

12~T~~13=8~lf'
The least common multiple of the numbers 12, 3, 8, 6 is 24, which is, there-

fore, the least common denominator of the above fractions, and the equation

will become

lOz 32z 312 21 52z

Hi "24 ~~"24~
=
24~~2T'

Multiplying both members of the equation by 24, the result is

lOz 32z 312=21 52x, an equation clear of fractions.

Hence it appears that,

In order to clear an equation offractions, reduce the fractions to a common

denominator, and then multiply each term by this common denominator. In the

fractional terms the common denominator trill be simply suppressed.

143. From what lias been said above, we deduce the following general

RULE FOR THE SOLUTION OF A SIMPLE EQUATION CONTAINING ONE UNKNOWN

QUANTITY.

1. Clear the equation offractions, and perform in both members all the alge-
braic operations indicated.

2. Transpose all the terms containing the unknown quantity to one member

of the equation, and all the terms containing knoicn quantities only to the other

member, and reduce each member to its most simple form.
3. We thus obtain an equation, one member of which contains the unknown

quantity alone, affected with a coefficient, and the other member contains known

quantities only ; the value of the unknown quantity will befound by dividing the

member composed of the known quantities by the coefficient of the unknou~n

quantity.

The terms containing the unknown quantity are usually collected in ihefrst
member of the equation, though they may often be more conveniently col-

lected in the second ; the second being afterward written as the first member,
and the first as the second.

Sometimes an equation presents itself as one of a degree higher than the

first, but both members are divisible by such a power of the unknown quan-

tity as to reduce the equation to one of the first degree.
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In other cases, clearing an equation of fractions reduces it, by the canceling

of those terms which contain the higher powers of the unknown quantity, to

the first degree.

A proportion containing an unknown quantity in any of its terms can be

thrown into the form of an equation by multiplying the extremes, and also thfl

means, and setting the two products thus formed equal to each other.

EXAMPLE I.

Given, 19.T+13 =59 ix.

Transposing, 19:r+ 4ar=59 13.

Reducing, 23z=46.

Dividing by 23, .r=2.

Verification. Substitute 2 for x in the given equation, it becomes

19x2+13=594x2, or

38+13=598, an identity.

Let this process be repeated in some of the following examples.

EXAMPLE II.

X 1C JC OC

Given,

Reducing to least common denominator 12,

2x 3.r 4x 6x

12-F2+ 10 = 12-12+ 11 -

Multiplying both members by 12,

2x 3Z+120 = 4.r 6z+132.

Transposing, 2z 3ar 4a:+6:r=132 120.

Reducing, x = 12.

EXAMPLE III.

5x4-3 4.r 10
Given,

Reducing to least common denominator 20,

25X+15 Sx-20~
20

Multiplying both members by 20,

252+15+140= 8x 20+200.

Transposing, 25x 8^=20020 15 140.

Reducing, 17x= 25.

25

Dividing by 17, r= TT-

EXAMPLE IV.

2x 5 7T10 12ar 10
Given ,

Reducing to common denominator,

303- 75 140x+200_ 144ar 120

60 60
= 16

go
'

Multiplying both members by 60,

30z 75 140x 200 =960 144x+120.

Transposing, 30.c 140z+144x=960+ 75 +200+ 120.
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Reducing, 34x=1355.

1355
Dividing by 34, x= -.

It is unnecessary to write the common denominator.

EXAMPLE T.

1-2 4x 2x4-5 7x4-60
Given, --- - = 3+^|50.
Reducing to least common denominator, 10, and neglecting it, we have

12 4x 4x 10 =30+ 35X+300 500.

Transposing, 4x 4z 35x==30+300 12+10 500.

Reducing, 43x= 172.

Changing the signs of both members,*
43x= 172.

Dividing by 43, x= 4.

EXAMPLE VI.

Given, ax-\-b =cx+<.
Transposing, ax cx= d b.

Simplifying, (a c)x= d b.

db
Dividing by (a cj,

x=- .

a ~~c

EXAMPLE VII.

ax ex ex

T+^+<=/x+T+w-

Reducing to a common denominator,

adhx bchx

Multiplying by bdh,

adhx+ bchx+ bdeh==bdfhx+bdgx+ Idhni.

Transposing, adhx-\- bchx bdfhx bdgx=bdhm bdeh.

Simplifying, (adh-\-bch bdfh bdg)x=bdhm bdeh.

bdhm bdeh
Dividing by coeffident of x, *=adh+bch-bdfh-bdg__bdh(m-e)

~adh+bchbdfhbdg'
EXAMPLE VIII.

x dx
Given,

- 1
^-+3a6=0.

Reducing to common denominator and neglecting it,

cxac adx-\-3a*bc=Q.

Transposing and simplifying, (c ad)x=ac 3a?bc.

^ , ^ f
Dividing by coefficient of x,

Verification.

ac(l Sab)

cad acd(l3ab)- 1 ^-Tr-a c(c ad)
* Or dividing both members by 43, gives x=4.
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or

b) ad(l-3ab)
1 ^-^ -f3a6=0;

c ad c ad

or

c 3abc c+ad ad+3a?bd-{-3abc 3a26d=0.

EXAMPLE IX.

Given, x+18=3x 5.

Transposing, 18-J-5 =3x x

23=2x

EXAMPLE X.

a b d
Given, -=-+--x c'e
Clearing of fractions, ace=bex -\-cdx

ace=(be-\-cd)x
ace

be-^-cd'

EXAMPLE XI.

Given, 3x2 lOx

Dividing by x, 3x 10 =8

EXAMPLE XII.

Given, xm=axm~l
.

Dividing by a?""1
,

x=a.

EXAMPLE XIII.

axm a' a"
Given, =g =T-

Multiplying by xm, axm a'=axm a"x.

Canceling axm in both members,
a'

a'= a 'x .'. ar=-^.a"

EXAMPLE XIV.

Given, a:bx::c:d .. bcx=ad .-.x=-r-.
be

144. In addition to the axioms in (Art. 141) we may subjoin the following :

If two equal quantities be raised to the same power, the results will be equal.

If the same root of two equal quantities be extracted, the results will be equal.

Hence any equation may be cleared of a single radical quantity by trans-

posing all the other terms to the opposite side, and then raising each member
to the power denoted by the index of the radical. If there be more than one

radical, the operation must be repeated. Thus :
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EXAMPLE XV.

Given, \/3-r+7=10.

Squaring each member of the equation,

3z+7=100.
Transposing, 3x=100 7.

Reducing, and dividing by 3, z=31.

EXAMPLE XVI.

Given,

Squaring both sides of the equation,

4z-f2=4r+ 1 -/4-r+ 25.

Reducing, 10 -v/4*=23.

Squaring both sides, 400^=529.
529

EXAMPLE XVII.

Given,
v *-

Clearing the equation of fractions,

x-\--28T/x-\-6i/

Transposing and reducing, 16=8 -\/x.

Dividing both members by 8, 2= -<Jx.

Squaring both members, 4= z.

EXAMPLE XVIII.

Given, ^/
'

a-\-x =
Raising both members to the m^ power,

Squaring both members, a2+2aor+x
s=xs

-|-5ax-|-6
J

.

Transposing and reducing, 3ax =6* a*.

Changing the signs, Sax =a3 6s.

a3 6s

Dividing by 3a, j '

3a
'

EXAMPLE XIX.

J/T. nl -'"/-r nVU.U -\7 X (L. v >- "
Glvea '

-^x^r- i
-

Since 5J/3^is the square of 2

^r, and a'3 is the square of a, we can perform
the division indicated in the first fraction, and have for a quotient

V
(6-1)'

(20) Given 4x+36=5x+34. Ans. ar=2.

(21) Given 4x 12+3x-|-l=2x-f4. Ans. r=3.
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(22) Given 3<z+ x 56+ 2 =7fr c+c+6. Ans. z=126 4a+c+4.

(23) Given 13f -=2ar 8J.

7a: 3ar
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4r 21 57 3x 5x 96

^4?) Given ---t-3f+ ^
-=241 -- llx. Ans. x=21.

6x-fl8 113* 13 i 21 2x

(48) Given -g--if =5x_48
jg-.

Ans. x=10.

2z 3 7T+4
(49) Given 5x+ = ^ +5. Ans. x=4.

bx d a ex ad
(50) Given ---=-r r. Ans. x=-r.

a c b d be

5xl 3x 2 llx 3 13x 15 8x 2
(51) 6^23++-,---ia-= --- -'

Ans. x^9.
1 3x 13 12+7x 9+5x llx 17

(52) G _ .

Ans. x=15.
ace

(53) Given -r ^!i6x=a<! 3&x. Ans. x=r ^

a+Sx 7a 5x 9x x
(54) Given-+3-=

39a6 14a
Ans. x=

27a6 96+12'

p- (Sic ad)x 5a(2ba)m
2b^i~2ab(a+b)~3^d

=
2ab(ab)" a*-b*

'

5fl(26 a)
ADS- J==

3c-d
'

d_ c
(56) Given ax+c=5x+^. Ans. x=-r.

(57) Given 2ax 6x+2ai=4a ai 3ar. Ans. x=..
~ *

.

OQ O

(58) Given (3ax)(a 6)+2cx=46(a+z), Ans. x=
a11

(59) Given rax+-6x=c. Ans. x=

(60) Given ^_l_^+3a6=0. Ans. x=gc(1~3)
.

a c c ad

a2* , . abc ac*+bcd c*d
(61) Given ^ -+dc=bxac. Ans. x=

/c ^. ^.
ax mx

(62) Given -T c= 4-a.
o

-' 12as6
(63) Given-r+46=T 7-. Ans. x=

a ^
36x x 6 6x a8 x -

(64) Given -
_^=^-^__. Ans.^^.^^^

(a4-6)(x 6) 4a6 b* a-bx
(65) Given -^-- 3a= T-T 2xJ--pf?.a 6 a+6 6

__a*-j-3a
3
64-4a-6

s 6a63+264~
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ax b ex px q rx 7cb-}-kq

(66) Given _+-+ =-_--^. ADS. *=-j.a _ft

a; .r oa: cz mx
(67) Given +++=T

, _.

12(1 m)+ 2(3a+ 26)+ 3c'

c<7
rb

(68) Givenr(a:r+& c)=c(pz+? r).
Ans. 0:=^-^

.

x-\-px qx mx n n(q p)

(69) Given ^l -=-. Ans. x= - .

(70) Given (

r(952m+4928j?)

(71) Given --+5Wx=
n g

^
5ng

Ans. x=

2226) 24(3a:r

(72) Given

(2041c 4406|Ar)5
AnS ' a:=

(455c

""

13m 7x km x m-\-p
(73) Given --:

-+-=- --- kx.
v

m-\-p
' m p m p

Ans< x

3abc (2a4-b)b*x a263
,

bx

Ans ' r=
(

a2

(74) Given

(75) Given ax
^
--a62=

Ans. x= -:
-T.
4a Jo

d b

(76) Given ax2
+6a;=c2;

2
+rfa:. Ans. x=^ ^.

D+ B
(77) Given Kxm+'Bx

m-l=Cxm Dx-1
. Ans. .r=

c_A .

(78) Given

105a3

Ans. x=

4m(K2
5x*) 5m(g*2x) 2K

(79) Given - -^--^!=7mp+
- Ans. x=

(80) Given^=y-^. Ans. *=
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ax* mz
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(106) Given ^Wx+3=7. Ans. x=.

(107) Given ^x 32=16 -j~x Ans. x=81.

bx 9 -JbxZ
(108) Given =- 1=-^ --

. Ans. z=5.
V/5Z+3_ _ 7,7,3_ fl.3

(109) Given h^axb=k^cx+dxf. Ans. g= *
3

v
(110) Given -= ^m. Ans. z=
v ' ' '

(111) Given Va?+c=\J ,. . Ans. z=Ji^== 9.

mx mpx* (nr4-mq)(nr wig)
(112) Given /2.r2+gz_l-- =rx. Ans. x= ^~- .

n r n 2mnpr
When an equation can never be verified, whatever value we put in the

place of the unknown quantity, it is said to be impossible ; and when an equa-

tion is always verified, whatever value be put for the unknown quantity, it is

said to be indeterminate.

CASES OF IMPOSSIBILITY AND INDETERMINATION IN EQUATIONS
OF THE FIRST DEGREE.

I. PROBLEM. To find a number such that the third of it, augmented by 75,

and five twelfths of it, diminished by 35, shall make three quarters of it, added

to 49.

The equation is

x bx 3x

x bx 3x

3 12 4
~~

9.r=108

.-. 0=108.
An absurdity. There is, therefore, no value of x which can satisfy the

equation [1].

The impossibility may be rendered evident in the equation [1] itself by re

ducing the similar terms in the first member ; thus,

3x

It is evident that the two members will always differ by 9, whatever be the

value of x.

II. PROBLEM. To find a number such that, adding together the half of it in-

creased by 10, two thirds of it increased by 20, and five sixths of it diminish-

ed by 34, the sum shall be equal to twice the excess of this number over 5.

.-. 3*+30+4:r+ 80 +5x 170=12x 60

.-. 3x-j-4a;4-5x 12x=170 30 80 60

i. e., 0=0.

The unknown x is, therefore, altogether indeterminate ; that is to say, it

may be taken equal to 2 or 3, or any number whatever.
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ON THE SOLUTION OF SIMPLE EQUATIONS, CONTAINING TWO OB
MORE UNKNOWN QUANTITIES.

145. A single equation, containing two unknown quantities, admits of an in-

finite number of solutions ;
for if we assign any arbitrary value to one of the

unknown quantities, the equation will determine the corresponding value of

the other unknown quantity. Thus, in the equation y=x-j-10, each value

which we may assign to x will, when augmented by 10, furnish a correspond-

ing value of y. Thus, if x=2, y=12; ifx=3, y=13, and soon. An equation

of this nature is called an indeterminate equation, and since the value of y de-

pends upon that of x, y is said to be &function of x.

In general, every quantity, whose value depends -upon one or more quantities,

is said to be a ruacxios of these quantities.

Thus, in the equation y=ax-\-b, we say that y is a function of x. and that

y is expressed in terms ofx, and the known quantities a, 6.

If, however, we have tico equations between two unknown quantities, and

if these equations hold good together, then it will be seen presently that we
can combine them in such a manner as to obtain determinate values for each

of the unknown quantities ; that is to say, each of the unknown quantities will

have but a single value, which will satisfy the equations. The equations in

this case are called determinate.

In general, in order that questions may admit of determinate solutions, we
must have as many separate equations as there are unknown quantities; a

group of equations of this nature is called a system ofsimultaneous equations.
If the number of equations exceed the number of unknown quantities, un-

ss the equations in excess conform to the values of the unknown quantities

determined by the others, the equations are said to be incompatible. Thus,
ifwe have x-|-y=10 and x y=6, the only values ofx and y which will satisfy

both these equations are 8 for x, and 2 for y. Now, if we were to add an-

other equation to these, it must conform to these values, and could not be

written in any form at pleasure. Thus, we might for a third equation say

xy=16 ; but we could not write xy=100, for this third equation would be-in-

compatible with the other two.*

*
Equations may be incompatible when the number does not exceed the number of un-

knowns, as the following problem will show :

A sportsman was asked how many birds he had taken. He replied, if 5 he added to the

third of those I took last year, it will make the half of the number taken this year. But if

from three times this last half 5 be taken, you win have precisely the number taken last

year. How many did he take in each year ?

Let x= the number this year, and y= the number last year.

*V. 3*

-=1+5,*= 5.

Substituting- in die first the value ofy in the second,

*= * 5
+52 23^

.'. 3 3x=30 10

=20;
an absurd equality, whence we conclude that there exist no values ofx and y which satisfy
the two equations.

This is because the conditions of the problem are inconsistent with each other. When,
;

however, the two equations are derived from the same problem, and its conditions are not

: contradictory, values for x and y will always be found to satisfy them.
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146. In order to solve a system of two simple equations conlaining two un-

known quantities, we must endeavor to deduce from them a single equation

containing only one unknown quantity ; Ave must, therefore, make one of the

unknown quantities disappear, or, as it is termed, we must eliminate it. The

equation thus obtained, containing one unknown quantity only, will give the

value of the unknown quantity which it involves, and, substituting the value of

this unknown quantity in either of the equations containing the two unknown

quantities, we shall arrive at the value of the other unknown quantity.

The process which most naturally suggests itself for the elimination of one

of the unknown quantities, is to derive from one of the two equations an ex-

pression for that unknown quantity in terms of the other unknown quantity,

and then substitute this expression in the other equation. We shall see that

the elimination may be effected by different methods, which are more or less

simple according to the nature of the question proposed.

EXAMPLE I.

Let it be proposed to solve the system of equations

y x= 6 H} \

y+x=l'2 (2)|

147. FIRST METHOD. From equation (1) we find the value of y in terms

of z, which gives y=x-{-6 ; substituting the expression x-\-6 for y in equation

(2), it becomes x+6+a:=12, from which we find the determinate value z=3 ;

since we have already seen that y=x-^-6, we find also the determinate value

y=3+6 or 9.

Thus it appears, that although each of the above equations, considered sep-

arately, admits of an infinite number of solutions, yet the system of equations

admits only one common solution, =3, 2/=9.

148. SECOND METHOD. Derive from each equation an expression for y in

terms of a:, we shall then have

y= x+6
y=l2x.

These two values of y must be equal to one another, and, by comparing

them, we shall obtain an equation involving only one unknown quantity, viz.,

a:+6=12 x.

Whence
x=3.

Substituting the value of x in the expression y=x-\-6, we find 2/=9.

The substitution of 3, the value of x, in the second expression, i/
= 12 or,

leads necessarily to the same value of y ; thus, 123=9, for we derived the

value of x from the equation z-f-6=12 x.

149. THIRD METHOD. Since the coefficients of y are equal in the two

equations, it is manifest that we may eliminate y by subtracting the two equa-

tionsfrom each other, which gives

(y+x)-(y-x)^12-6.
Whence

2xQ
x=3.

Having thus obtained the value of x, we may deduce that of y by making

1=3 in either of the proposed equations; we can, however, determine the
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value of y directly, by observing that, since the coefficients of x in the proposed

equations are equal, and have opposite signs, we may eliminate x by adding
the two equations together, which gives

(y-x)+(y+x)=i2+6.
Whence

2y=l8
y=9.

If we examine the three above methods, we shall perceive that they con-

sist in expressing that the unknown quantities have the same values in loth

equations.

These methods have derived their names from the processes employed to

effect the elimination of the unknown quantities.

The first is called the method of elimination by substitution.

The second is called the method of elimination by comparison.
The third is called the method ofelimination by addition and subtraction.

The role for the first is tofind the value of one of the unknown quantities in

one of the equations, and substitute it in the other equation.

For the second, is to find the value of the same unknown quantity in each of
the two given equations, and set these values equal.

And for the third, is to make the coefficient of the unknown quantity to be

eliminated the same in the two equations, and add or subtract as the case may
require. AJd, if the signs of the equal terms are different, and if they are

alike, subtract.

By either of these rules a single equation, containing but one unknown quan

tity, is obtained.

EXAMPLE II.

Take the equations

2x+3y=13 ........... (1)

5*4-4^=22 ........... (2)

1. Eliminating by substitution.

From equation (1), we find

13 2ar

Substituting the value of y in terms of x in equation (2), it becomes
13 2x

5ar+4x 3
-=22;

an equation containing x alone, which, when solved, gives

:r=2.

This value of x, substituted in either of the equations (1) or (2), gives

y=3.

2. Eliminating by comparison.

13 2*
From equation (1) y= -

.

22 5x
From equation (2) y= -

.

13-2* 22 5z
Equating these values of y,

- =
j

; an equation containing x only

K
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Whence
z=2.

Substituting this value for x in either of the preceding expressions for y,

we find

y=3.
3. Eliminating by subtraction.

In order to eliminate y, we perceive that if we could deduce from the pro-

posed equations two other equations in x and y, in which the coefficients of y
should be equal, the elimination of y would be effected by subtracting one of

these new equations from the other.

It is easily seen that we shall obtain two equations of the form required if

we multiply all the terms of each equation by the coefficient of y in the other.

Multiplying, therefore, all the terms of equation (1) by 4, and all the terms of

.equation (2) by 3, they become

15x+12y=66.
Subtracting the former of these equations from the latter, we find

7x=14.
Whence

x=2.
In like manner, in order to eliminate .r, multiply the first of the proposed

equations by 5, and the second by 2, they will then become

10:r+157/=65

lOz-f 8y=U.
Subtracting the latter of these two equations from the former,

7y=21.
Whence

y=3.
In order to solve a system of three simple equations between three unknown

quantities, we must first eliminate one of the unknown quantities by one of the

methods explained above; this will lead to a system of two equations, con-

taining only two unknown quantities ; the value of these two unknown quan-
tities may be found by any of the methods described in the last article, and

substituting the value of these two unknown quantities in any one of the original

equations, we shall arrive at an equation which will determine the value of the

third unknown quantity.

EXAMPLE III.

Take the system of equations

3*4-27/4- z=16 ......... (1)

2*4- 2^4- z=14 ......... (3) )

1. Eliminating by substitution.

From equation (1), we find

2=16 3x 2y .......... (4).

Substituting this value ofz in equations (2) and (3), they become

2x4-21/4-2(16 3x2y)= 18 . . . (5) >

2*4-27/4- (16 3x 2y)=U . . . (6) S

these last two equations contain x and y only, and, if treated according to any
of the above methods, will give us
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Substituting these values of x and y in any one of the equations (1), (2), (3),

4), we find

2=4.

2. Eliminating by comparison.

In order to eliminate z, derive from each of the three proposed equations a

value of 2 in terms of x and y ; we then have

z= 16 3x 2y
2= 9 x y
2=14 2x 2y;

equating the first of these values of 2 with the second and with the third in

succession, we arrive at a system of two equations :

16 3x 2y= 9 x y
16 3x 2t/= 14 2.r 2y

containing x and y only ; these equations give

x=2, t/=3;

these values of x and y, when substituted in any of the three expressions for

2, give

2= 4.

3. Eliminating by subtraction.

In order to eliminate z between equations (1) and (2),

3x+2y+ 2=16

2x+2y+2z= 18;

we perceive that, in order to reduce these equations to two others in which
the coefficients of z shall be the same, it wiQ be sufficient to divide the two
members of the second equation by 2, for we thus have

x+y+2=9.
Subtracting this from the first equation,

3x+2y+z=16,
we find an equation between two unknown quantities,

2x+y=7 (a).

In order to eliminate 2 between equations (1) and (3),

3x+2y+z=16
2x+2y+z= 14.

Subtract the latter from the former, which gives

x=2;
the substitution of this value of x in equation (a) gives

3/=3,
and the substitution of these values of x and y in any of the proposed equa
tions gives

2= 4.

The particular form of the proposed equations enables us to simplify the

above calculation ; for if we subtract equation (3) from equations (1) and (2)
in succession, we have

(3x+2y+ z) (2x-f2y+z)=16 14, whence x=2
(2x+2y+2z) (2x+2y+2)= 18 14, whence z=4;

and substituting these values of x and z in any of the proposed equations, we
find
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In order to solve a system offour equations behcecnfour unknown quantities,

we reduce this case to the last by eliminating one of the unknown quantities.

We thus arrive at a system of three equations between three unknown quan-

tities, from which the value of these three unknown quantities may be found.

Substituting these values in any one of the equations which involve the other

unknown quantity, we deduce from it the value of that unknown quantity.

EXAMPLE IV.

Take the system of equations

z+y+z t= 4 (2) I

x+y z+2<=ll (3)
[

xyJrz-{-3t=18 '. . (4)J

The first equation gives

=14 x y z (5).

Substituting this expression for t in the three other equations, we find

x+ y+ z= 9 (6)

x+ 2/+3z= 17 (7)

3r-}-2y+ z=12 (8).

In order to solve these three equations between , y, z, we find from the

first

z=9-x-y (9);

and substituting this value of z in the two other equations, they become

x+y=5 (10)

y= 3 (11)

Whence z=2 (12).

Substituting the values of x and y in equation (8), we find

z=4 (13).

Substituting these values of a:, y, z in any of the first five equations, we find

t=5.

We can arrive at the same result more simply by subtracting equation (1)

from the three following in succession ; we shall thus find

2^=14 4, 2z =14 11, 2y 2=14 18;

the first of these three new equations gives t=b ; this value of <, substituted

in the two other equations, gives z=4, y=3 ; and substituting these values of

y, z, t in any one of the original equations, we find .T=2.

By following a process of reasoning analogous to the above, we shall be able

to resolve a system of any number of equations of the first degree, provided

there be as many equations as unknown quantities.

It frequently happens that each of the proposed equations do not involve all

the unknown quantities. In this case, a little dexterity will enable us to effect

the elimination very quickly.

EXAMPLE V.

Take the system of equations

2z 3?/+2z=13 (1)

4 2z=30 (2)

5i/-|-3t=32 (4)

Upon examining these equations, we perceive that the elimination of z be
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tween equations (1) and (3) will give an equation in x and y, and that the

elimination of t between equations (2) and (4) will give a second equation in

x and y. These two unknown quantities may thus be easily determined :

The elimination of 2 between (1) and (3) gives .... 7y 2*= 1

The elimination of t between (2) and (4) gives .... 2Qy-{-6x=38

Multiply the first of these equations by 3, and then add

them, we have 41y=4i
Whence y= 1

Substituting the value of y in 7y 2x=l, we have . . . *= 3

Substitute this value of x in (2), we have 4i 6=30
Whence t=. 9

Finally, the substitution of the value of y in (3) gives . . r= 5

The following general rule may be given for a system of any number of

equations :

Eliminate one of the unknown quantities by combining the first equation

with each of the others, or by combining them all in any way in separate

pairs. The number of equations and of unknown quantities is thus made one

less. Proceed with these in the same way till there is but one equation and

one unknown quantity. Having found the value of this, substitute it in a pre-

ceding equation containing but two unknown quantities, which will then have

but one, whose value may be found. Substitute the values of the two un-

known quantities thus found in an equation immediately preceding, containing

only three, and so on, till all the values of the unknown quantities are obtained.

We have seen in the method of elimination by subtraction that, in order to

render the coefficients of the unknown quantity the same in both equations,

we must multiply each of the equations by the coefficient of the unknown

quantity, which it is required to eliminate, in the other. If the coefficients of

the unknown quantity have a common factor, this operation may be simplified;

thus

EXAMPLE VI.

Take the system of equations

12r+32i/=340 (1)

8jr+ 24^=254 (2)

In order to render the coefficients of y equal, observe that 32 and 24 have a

common factor, 8 ; it will suffice then to multiply equation (1) by 3, and equa-
tion (2) by 4

; they then become

36z-{-96y=1020

32z+96T/=1016.

Subtracting the latter from the former,

z=l.

Again, in order to eliminate x, since 12 and 8 have a common factor, 4, it

will suffice to multiply equation (1) by 2, and equation (2) by 3 ; we then have

24z-f64^=680
24*4-72^=762.

Subtracting the former of these two equations from the latter, we have

8y=82
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(7) Given ar+y= 15 ............. (1)

x-y= 7 ............. (2)

Ans. a:=ll, 2/=4.

(8) Given x+y = 10 ............ (1)

2x3y= 5 ............ (2)

Ans. =7, y= 3.

(9) Given 2z+3y=13 ............ (1)

5x+4y=22. ... ........ (2)

Ans. a:=2, 2/=3.

(10) Given a-=4?/ .............. (1)

2x+37/=44 ............ (2)

Ans. =16, y=4.

(11) Given 2x+3y= 70 ........... (1)

4ar+53/= 130 ........... (2)

Ans. x=20, y=lO.

(12) Given 3a: 5?/=13 ............ (1)

81 ............ (2)

(13) Given lla:+3i/=100 .......... (1)

4x7y= 4 .......... (2)

Ans. =8, 2/=4.

(14) Given |+|=7 ............. (1)

x y . .

3+ 2
=8

'-> '

Ans. ar=6, i/=12.

(15) Given ^+7i/=99 (1)

Ans. r=7, 2/=14

(16) Given 3t+^=22 (1)

HM T =20 (2)
o

Ans. t=5, w=2.

(17) Given x+I:y::5:3 (1)

7+x 5y 42 2x I

4 2
=

12 4~ ' ' ' '
(2 )

Ans. x=4, y=3
27* 45

(18) Given -+-g-=64 (1)

*

if+ro=77

Ans. r=60, s=30

(19) Given 5p+2<r=131j .......... (1)

13p d=142j .......... (2)

Aus. p=
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(20) Given 6^14^=5^+119| ............ (1)

Ans. *= 24.07, ^= 14-.24.

(21) Given 9x=tof ................. (1)

26 ............... (2)

Ans. i=8, x'szlS.

(22) Given^
............. (1)

21z,+23z a=334 ........... (2)

t/4-3

(23) Given 2x ^-=8 ............... (1)

Ans. r=5, y=5.

x n- c ,
y

(24) Given 5+-g-=
-

^
---

j^
---- (1)

7J+6 9j/+5z-8 x+y
~ll~

:

12 4

Ans. z=7, y^9.

(25) Given (r+5)(y+7)=(x+l)(y-9)+112 ---- (1)

2x+10=3y+l ........... (2)

Ans. z=3, y:=5.

2z v 3y 1

(26) Given --4+|+x=8-f+- ........ (1)

Ans. x=2, y:=7
x 2 10 x y 10

(27) Given - g-^^p- .......... (1)

2x+y x+13
~^~=~4~ .......... (2>

Ans. x=7, y=10.
2

x:3y::4:7 ................. (2)

Ans. x=12, y=7.

3y_2+z
(29) Given x--J

n
^
=1+ 33

' ........ (1)

3x+2y y-5 llx+152_3y+l
6

'

4
:

12 2

Ans. x=8, y=9.

(30, G,

l=f :5l_Hy ::1:8......... (2)

Ans. x=3, y=7.
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4z 5w 9
(31) Given*

-+^=--1
...... .. ....... (1)

x'T~y
:=

x~*~ 2

(32) Given 5:r+72/=43

(33) Given 8ar 21t/= 33

6x+35i/=177

2x V
(34) Given y-4+|+2:=8+-

(35) Given x

22

(,36) Given aa:+ 6t/=c

fx+gy=h

(37) Given x+y=s
xy=d

(38) Given x+2/=s
bx=ay

(39) Given ax+~by=c
mxny=d

. Xm r
t 1/= :

-
;-.

na-\-mb
*

na-\-mb

(40) Given 7ax=46 ................. . . (1)

2cx+ 3fy=4c ................ (2)

4b 28ac8bc
Ans. x= , y= -= .

7a 3 2lad

(41) Given bcx=cy2b ................ (1)

Ans. ar=T-, v=yT-,
be y c

* These equations should not be cleared of fractions, but the unknown fractions be elimi

nated by making them alike, and subtracting.
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(42) Given rTT=^- (!)

(2)

Am. x=------ , y=

(43) Given ar ~=
W

a ai-j-Z^c+od a -{-06

(44) Given - = - .............. (1)
wi-|-:r 3m y

5ax2by=c ................ (2)

(<? &) 2fr

(45) Given ty+S J_
T=sAr ......... (1)

(2)

y?
Ans. x= jM=

336
(46) Given 17x--,+(ft+10/)^=fx ....... (1)

2/

(4?) Given -+-=m .................. (1)* y

6c ad fee a<i

Ans. =-r-ji y=-no ma J me na

_48) Given x +y =s

_\ns. .r
~

. - ^_
2 J 2*

(49) Given x-j-y :a::r y : & (1)

x*y*=c (2)

a+6 Jc a 6 /c

(50) Given x+ ^/x-+y=a ............... (1)

x+ V&=y=b ............... (2)

a^+o3
g&(a 6)~' ?= '

(51) Given x3+xy=a ..................... (1)

y*+xy=b . ............ . ...... (2)

a b
Ans. x= , y=
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(52) Given 2*+3y+4z=16
3x+2y 5z= 8

5z 6i/+3z= 6

(1)

(2)

(3)

Ans. 2=3;

(53) Given 5x6y+4z=I5
3z=19

(1)

(2)

(3)

(54) Given* J+=<*

1+1=1
a:

' z

Ans. z=3; 2/=4 ; 2=6.

(1)

Ana. x=

(!)

(3)

2

b-4-c a"a-\-b c a 6+c'

(55) Given x-\-y=36 ; r+z=49; 7/+z=53.
Ans. =16; ^=20; z=33

(56) Given v-\-w-\-z=30; v+w z=18; v w+z=14.
Ans. TJ=]

(58) Gi

Ans. w=128; v=72; ?=40.

=c; m2/+nz=j7 ; /r-f-gzzzi^.

bnq-\- cgm bgp

agm-}-bfn

agp -\-cfn anq

(59) Given

Ans. a;i=

amq-\-bfp c/m

agm-\-bfn

=z; 5y=7(x+3a); llx=|z+121.

4840+189a6
Ans. x=

440 45a 636
'

6776+1848a 189az

440 45a 636
'

14520a4-5544a6+203286
440 45a 636

'

7 5 9 11 13 15

(60) Given __=-
;
_=_. -=^^

Ans. x=

a_^-6 bc 6-{-c c

(61) Given =;
* Do not clear of fractions, but make -, -, &c.. the unknown quantities.

x y
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(62) Given 2* -^=93
-x

jy (1)

7x 5z=</ +x 86 '. (2)

i+l +1
=58 <3>

Ans. x=48; y=54 ; z=64.

(63) Given 6x 4y+5z=2i| (1)

4x_j-3y-7z=U (2)

12x 6y 3z=3| (3)

A T1Q I"*" ^ 7/ "~~ *> ^ \..rxua. x ^
,j ) v ^ * 5 ' ** ""^

(64) Given 18x 7y 5z = 11 (1)

4y_|x+2|z=108 (2)

3|2+2y+^x = 80 (3)

Ans. x=12; y=25; z=6.

(65) Given 2/+|=|+5 (1)

4 5
=
^0~ ^

Ans. xr=5; y=7 ; z= 3.

x ti 2z

(66) Given - + |+y= 58 (1)

5x y z

T+l+3= 76 <
2
>

x 3z

2+T+5= 79 <3>

y + z + u =248 (4) J

Ans. x=12; y=30; z=168; w=50.

(67) Given 7x 2z+3u=17 (1)

'

5y_3j_2u= 8 (3)

4y3u+2t= 9 (4)

3z+8u=33 (5)

Ans. x=2; y=4; z=3; =3; t=l.

Elimination may be effected in a general form, and particular cases be re-

solved by substitution in this form.

We shall illustrate this with a system of three equations.

Given ax -{-by -\-cz -\-k =0,
a'x -\-b'y -\-c'z -\-k' =0,

a"x+b"y -j-c"z+4"=0.

Eliminating among these three equations by any of the foregoing methods,

we find

(b"c' b'c")k -f (be" b"^ -f (b'c bc')k"

(a'b" a"b')c-\-(a"b ab")c' -\-(ab' a'6)c"'
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_ (a'c" a"c')k -}- (a"c ac")Jc' -\-(ac' a'c)k"
J The same denominator as in the value of a:

'

_ (a"b
r

a'b")Jc+ (ab"a"b)k' + (a'bab')k"
The same denominator as in the value of x

To apply this general form to a particular case, take (Example 53) above.

._(1X 3 4X6)( 15)-f( 6X6 1X4) ( 19)+[4X4 ( 6X 3)]( 46)^1257

(7X1 2X4)4+(2X 6 5X1)( 3)-f-(5X4 7X 6)6
~

419
'

30)( 19)+ ( 15 28)(^46) _1676~~ 4 '419

-62)(-46)_2514 ~
419

~
419

Changing the signs of Jc, k', k", in order that they may be positive in the

second member of the three proposed equations, and performing the multipli-

cations indicated in the general values of x, y, and z, they may be written as

follows :

kb'c" kc'b" +ck'b" bk'c" + bc'k" cb'k"=
ab'c" ac'b" -{-ca'b" ba'c"-\-bc'a" cb'a'"

ak'c" ac'k" + ca'k" ka'c"+kc'a" ck'a"

* The same denominator as that of x

ab'k"ak'b"+ka'b" ba'k"+bk'a" kb'a"

The same denominator as before

By observing carefully the composition of the formulas for two and three

equations, we may discover general rules by means of which we can calcu-

late the formulas suitable for any number of equations.

FIRST RULE. To find the common denominator in the values of all the

unknown quantities. With the two letters a and b form the arrangements
ab and ba, then interpose the sign between them, thus :

ab ba.

If there are but two equations to resolve, place an accent on the 2 letter

of each term, and the result, ab' ba', will be the common denominator of

the values of x and y.

If there are three equations, pass the letter c through all the places in each

term of the expression ab ba, taking care to alternate the signs ; ab will thus

give abc acb-\-cab ; also, ba will give bac-\-bca cba, and the whole

abc acb-{-cab bac-\-bca cba ;

then place one accent on the 2 letter of each term, and two on the 3, and the

resulting expression will be the common denominator of the values of or, y, and 2.

If there are four equations, take the letter d, which is the coefficient of the

fourth unknown u, and pass it through all the places in each term of the sexi-

nomial above formed, taking care to alternate the signs of the terms furnished

by each of them, beginning with -j- f r those which result from a term pre-

ceded by the sign -j-> a d with for those resulting from a term affected

with the sign ; finally, place one accent on the 2 letter, two on the 3, and

three on the 4. The resulting polynomial is the common denominator of the

four unknown quantities x, y, z, u.

ab'c"d'" ab'd"c'"+ ad'b"c"' da'b"c'"

ac'b"d'"+ ac'd"b'" ad'c"b
f"+ da'c"b" f

+ ca'l"d"'ca'd"b'"+cd'a"b"'dc'a"b'"
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ba'c"d'"+ ba'd"c'" bd'a"c"' -f-db'a"c'"

+ bc'a"d'" ldd"a'"+ bd'c"a'"db'c"a"

cb 'a"d'"+ cb'd"a"' cd'b"a'"-f rfc'6"a'".

if there be a greater number of equations, proceed in the same manner.

SECOND RULE. The numerators may be derived from the common de

nominator. For this purpose, it is only necessary to replace, without touch-

ing the accents, the letter which serves for coefficient of the unknown quanti-

ty we wish to find, by the letter k, which represents the known term in the

second member. Thus : change a hito k, to have the numerator of x ; b into

k, to have that of y ; and so on.

There remains still a method of elimination to be mentioned, which alone

is applicable to equations of higher degrees, as well as to those of the first. It

is called the method of the common divisor. It consists, where two equations

are given, in dividing one by the other (after transferring all the terms to the

first member in both), that divisor by the remainder, and so on till the letter

of arrangement, which must be one of the unknown quantities, is exhausted

from the remainders. The last remainder containing but the other unknown

quantity, being put equal to zero, will present an equation from which the first

unknown quantity is eliminated.

If there be three or more equations, eliminate one of the unknown quanti-

ties in this way between the first and second, then between the first and third,

and so on.

The reason which may be given for this rule here, though a better one will

be furnished hereafter, is, that the dividend being zero and the divisor zero,

the remainder must be zero.

Let us apply this method to Example (8) above. The two given equations are

x+ y 10=0

2x3y 5=0.
Elimination,

2x3y 5

2z-f 2.y 20
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This last remainder, put equal to zero, will make an equation from which x

is eliminated, and which contains only y- It is called the final equation.

ON THE SOLUTION OF PROBLEMS WHICH PRODUCE SIMPLE
EQUATIONS.

150. Every problem which can be solved by Algebra includes in its enun-

ciation a certain number of conditions of such a kind that, in taking at pleasure

values for the unknown quantities, it is always easy to see whether or not they
will verify these conditions. In the greater part of questions in Algebra, these

verifications consist in this, that, after having effected certain operations upon
the values of the known and unknown quantities, we ought to arrive at equali-

ties. This being understood, if the unknown quantities be represented by

letters, algebraic expressions may be formed in which shall be indicated, by

means of signs, all the calculations necessary to be made, as well upon the un-

known numbers as upon the known, to find the quantities which ought to be

equal. Consequently, joining these expressions by the sign of equality, we
shall have one or more equations, which will be satisfied when the true val-

ues of the unknown quantities are substituted in the place of the letters which

represent them.

Reciprocally, when all the conditions of the problem are expressed in the

equations, the values of the unknown quantities which satisfy these equations

must certainly satisfy the enunciation of the problem.
It is impossible to give a general rule which will enable us to translate eve-

ry problem into algebraic language ; this is an art which can be acquired by
reflection and practice alone. Two rules which may be of some service are

the following: 1. Indicate upon the unknown quantities represented by letters,

and upon the known quantities represented either by letters or numbers, the same

operations as would be necessary to verify them if they were known. 2. Form
two different expressions of the same quantity, and set them equal. We shall

give a few examples, which will serve to initiate the student, and the rest

must be left to his own ingenuity.

PROBLEM 1.

To find two numbers such that their sum shall be 40, and their difference

16.

Let x denote the least of the two numbers required,

Then will x-\-\6= the greater,

And a;-|-a:-j-16=40 by the question;

That is, 2z=40 16=24;
24

Or 2:= =12= less number,
Sp

And a:+16=12+16=28= greater number required.

PROBLEM 2.

What number is that, whose ^ part exceeds its j part by 16 ?

Let x= number required,

Then will its \ part be Jx, and its { part %x ;

And, therefore, \x |x=16 by the question,

Or, clearing of fractions, 4x 3.r=192 ;

Hence =192, the number required.
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PROBLEM 3.

Divide dlOOO among A, B, and C, so that A shall have 72 more than B
and C dElOO more than A.

Let z= B's share of the given sum,

Then will x+. 72= A's share,

And x+172= C's share,

And the sum of all their shares, x+:r+72+x+172,
Or 3z+ 244= 1000 by the question ;

That is," 3j:=1000 244=756,
756

Or =-=66252= B's share ;

o

Hence ar+ 72=252+ 72=d6324= A's share,

And x+172=252+172=66424= C's share;

B's share .56252

A's share 324

C's share 424

Sum of all . . 661000, the proof.

PROBLEM 4.

Out of a cask of wine, which had leaked away i, 21 gallons were drawn,

and then, being gauged, it appeared to be half full : how much did it hold ?

Let it be supposed to have held x gallons,

Then it would have leaked ir gallons ;

Consequently, there had been taken away 21-j-ix gallons.

But 21+ Jz=? by the question,

Or 126+2x=3i;
Hence 3x 2x=126,
Or z=126= number of gallons required.

PROBLEM 5.

A hare, pursued by a greyhound, is 60 of her own leaps in advance of tne

dog. She makes 9 leaps during the time that the greyhound makes only 6 ;

but 3 leaps of the greyhound are equivalent to 7 leaps of the hare. How
many leaps must the greyhound make before he overtakes the hare ?

It is manifest, from the enunciation of the problem, that the space which

must be traversed by the greyhound is composed of the 60 leaps which the

hare is in advance, together with the space which the hare passes over from

the time that the greyhound starts in pursuit until he overtakes her.

Let z= the whole number of leaps made by the greyhound. Since the

hare makes 9 leaps during the time that the greyhound makes 6, it follows

9 3
i that the hare will make - or -

leaps during the time that the greyhoundO *f*

3x
makes 1, and she will consequently make leaps during the time that the

greyhound makes x leaps.

We might here suppose that, in order to obtain the equation required, it

3x
would be sufficient to put x equal to 60+ 17 5 in doing this, however, we

SB

should commit a manifest mistake, for the leaps of the greyhound are greater
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than the leaps of the hare, and we should thus be equating two heterogeneous
numbers ; that is to say, numbers related to a different unit. In order to re-

move this difficulty, we must express the leaps of the hare in terms of the

leaps of the greyhound, or the contrary.

According to the conditions of the problem, 3 leaps of the greyhound are

7

equal to 7 leaps of the hare
; hence 1 leap of the greyhound is equal to -

o

7x
leaps of the hare, and, consequently, x leaps of the greyhound are equal to

o

leaps of the hare ; hence we have at length the equation
7x 3z

T=60+-;
Clearing of fractions, 14x=360-|-9x

x-= 72.

Hence the greyhound will make 72 leaps before he reaches the hare, and in

3
that time the hare will make 72 X ' or *08 leaps.

PROBLEM 6.

Find a number such, that when it is divided by 3 and by 4, and the quo-

tients afterward added, the sum is 63.

Let x be the number ; then, by the conditions of the problem, we have

x x

3+4= 63 '

Clearing of fractions, 7x= 63x12
z=108.

If we wished to find a number such that, when divided by 5 and by 6, the

sum of the quotients is 22, we must again translate the problem into algebraic

language, and then solve the equation ; in this case we have

x x

5+ 6= 22 '

Clearing of fractions ll:r=22 X 30

x=60.

If, however, we desire to solve both these problems at once, and all others

of the same class, which differ from the above in the numerical values only,

we must substitute for these particular numbers the symbols a, 6, c, ,

which may represent any numbers whatever, and then solve the following

question.

Find a number such that, when it is divided by a and by 6, and the quo-

tients afterward added, the sum is^>. We have

x x

a+6 =^ ;

\x= abp

dbp

151. This expression is not, strictly speaking, the value of the unknown

quantity in our problems, but it presents to our view the calculations which

are requisite for the solution of them all. An expression of this nature is call*
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ed &formula. This formula points out to us that the unknown quantity is ob-

tained by multiplying together the three numbers involved in the question,

and then dividing their product, abp, by a-f-ft. the sum of the two divisors ; or

we should rather say, that our formula is a concise method of enunciating the

above rule.* Algebra, then, may be considered as a language whose object

s to express various processes of reasoning, as also the results or conclusions

to which they lead.

Such is the advantage of the above formula, that, by aid of it, the most ig-

norant arithmetician could solve either of the proposed problems as readily as

the most expert algebraist. The former, however, could only arrive at the

result by a blind reliance on the rule which the formula expresses ; but differ-

ent kinds of problems require different formulae, and the algebraist alone pos-

sesses the secret by which they can be discovered.

PROBLEM 7.

A laborer engaged to serve 40 days upon these conditions : that for every

day he worked he was to receive 80 cents, but for every day he was idle he
was to forfeit 32 cents. Now at the end of the time he was entitled to re-

ceive $15.20. It is required to find how many days he worked and how

many he was idle.

Let x be the number of days he worked ;

Then will 40 x be the number of days he was idle ;

Also zx80=80x= the sum earned,

And (40 x) X 32=1280 32z= sum forfeited ;

Hence 80x (1280 32x)= 1520 by the question ;

That is, 80* 1280+32x=1520,
Or 112j=1520-|- 1280=2800 ;

2800
Hence x= =25= number of days he worked,

JL J. w

And 40 :r=40 25=15= number of days he was idle.

We may generalize the above problem in the following manner:

Let = the whole number of days for which he is hired,

a= the wages for each day of work,
b= the forfeit for each day of idleness,

c= the sum which he receives at the end of n days,
x= the number of days of work

;

Then n .r= the number of days of idleness,

ax= the sum due to him for the days of work,

b(n x)= the sum he forfeits for the days of idleness.

We thus find for the equation of the problem,

ax b(n r)=r c ;

Whence ax bn -\-bx= c

(a+b)x= c-f bn

c-\-bnz=
,

, . the number of days of work,

* Let the student try this rule upon a variety of numbers ; he will ice that the genera,
formala embraces as many particular examples as he chooses

Li
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c-f&reAnd .. n x= n =-

a+6
an-\-bn c bn

a+b
an c

number of days of idleness.

By substituting in these general expressions, for the number of days of

work and number of days of idleness, the particular numerical values of the

letters, the same result will be obtained as before.

PROBLEM 8.

A. can perform a piece of work in 6 days, B can perform the same work in

8 days : in what time will they finish it if both work together ?

Let x= the time required.

Since A can perform the whole work in 6 days,
- will denote the quantity

x
he can perform in 1 day, and therefore - the quantity he can perform in x

x
days ; for the same reason,

- will be the quantity which B can perform in x
o

days ;
and we shall thus have

14a:=48

x=3% days.

Let us generalize the above problem.

A can perform a piece of work in a days, B in 6 days, C in c days, D in d

days : in what time will they perform it if they all work together ?

Let x= the time ;

Then, since A can perform the whole work in a days,
- will denote the

vT

quantity he can perform in 1 day, and, consequently,
- will be the quantity he

XXX
can perform in x days ; for the same reason, r, -, -3 will be the quantities

which B, C, D can perform respectively in x days ; we thus have

+++= (wholework)'

abed

abc-\- abd -j- acd -j- bed
'

What is the rule expressed by this formula ?

* Let the student translate the formula for the number of days of idleness, and that for

the number of days of work, into a rule.

f> p
t We might represent the piece of work byp ; then ~ and would express the quantities

6 o

which A and B can perform in one day, and the equation would be

which, divided throughout by p, gives the equation in the text. When the value of a quan-

tity is immaterial, as in this case, it is best represented by 1.
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PROBLEM 9.

A courier, who traveled at the rate of 31j miles in 5 hours, was dispatched

from a certain city ; 8 hours after his departure, another courier was sent to

overtake him. The second courier traveled at the rate of 22 miles in 3 hours.

In what time did he overtake the first, and at what distance from the place of

departure ?

Let z= number of hours that the second courier travels.

Then, since the first courier travels at the rate of 3H miles in 5 hours, that

fil fil

is, miles in 1 hour, he will travel x miles in x hours, and, since he start

ed 8 hours before the second courier, the whole distance traveled by him will

63
be (8+*)-.

Again, since the second courier travels at the rate of 22| miles in 3 hours

that is, miles in one hour, he will hence travel x miles in x hours.
b b

The couriers are supposed to be together at the end of the time r, and

therefore the distance traveled by each must be the same ; hence

45 63

450z= (8 +a:)378;
.-. 72x=3024

or=42.

Hence the second courier will overtake the first in 42 hours, and the whole

distance traveled by each is X 42=315 miles.

To generalize the above,

A B C

Let a courier, who travels at the rate of m miles in t hours, be dispatched

from B in the direction C ; and n hours after his departure, let a second

courier, who travels at the rate of m' miles in t' hours, be sent from A, which

is distant o miles from B, in order to overtake the first. In what time will he

come up with h :m, and what will be the whole distance traveled by each ?

Let x= number of hours that the second courier travels.

Then, since the first courier travels at the rate of m miles in t hours, that is,

miles in 1 hour, he will travel x miles in x hours, and, since he started n

hours before the second courier, the whole distance traveled by him win be

m
<n+*)7 .

Again, since the second courier travels at the rate of m' miles in t' hours,

,

that is, miles in 1 hour, he will travel x miles in x hours ; but since he" r

started from A, which is distant d miles from B, the whole distance traveled

by the second courier, or -72:, will be greater than the whole distance traveled

by the first courier, by this quantity d ; hence
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m! m
-x-d=(n+x)7

(m

r

m\ mn

Y-J)x=-+d;

(mn+ td)t
r

~
m't mi'

The whole distance traveled by first courier, = ) - '
'

'

-f-*
ra t

t < m't ml' )

The whole distance traveled by second courier, = . -- ' ''
.

t' m't mi!

PROBLEM 10.

A father, who has three children, bequeaths his property by will in the fol-

lowing manner : To the eldest son he leaves a sum, a, together with the n& part

of what remains ; to the second he leaves a sum, 2a, together with the nth
part

of what remains after the portion of the eldest and 2a have been subtracted ;

to the third he leaves a sum, 3a, together with the wth
part of what remains

after the portions of the two other sons and 3a have been subtracted. The

property is found to be entirely disposed of by this arrangement. Required
the amount of the property.

Let x= the property of the father.

If we can, by means of this quantity, find algebraic expressions for the por-

tions of the three sons, we must subtract their sums from the whole property

a:, and, putting this remainder =0, we shall determine the equation of the

problem.
Let us endeavor to discover these three portions.

Since x represents the whole property of the father, x a is the remainder

after subtracting a ; hence,

Portion of eldest son, =a+-
W9

x a

(1)

n

an-\-x a

an-if-x a
x 2a !

n

nx San x-\-a

Portion of second son, =2a-j--

1

=2a+- m

Jlan+nx-3a*
t

(g)

an-\-x a 2awz+nx Sara x-\-a

n ra
s

Portion of third son, = Sa -\ n

ri*x 6ans
2nx-\-4an-4-x a

=3a+
n*

=3aW +^ ^^ an+X~a
(
3 '

According to the conditions of the problem, the property is entirely disposed
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of. Hence, when the sum of the three portions is subtracted from r, the dif-

ference must be equal to zero ; this gives us the equation

an-\-x a 2an?-\-nx San x-\-a Zari*-\-rPx 6an- 2Kx-}-lan-$-x a_
n n* i*5

clearing the equation of fractions, and reducing,

7r?x_6an3 3n2z+10an3+3nz &m r-fa=0
... (n

3 3W -j-3n l)ar=6an
3 10aw3

-f ban a

6an3 10an2+5an a (6n
3 10n3+5 l)a

x==
n3_3^_|_3w_i

=~
(_ 1)3

By reflecting upon the conditions of the problem, we may obtain an equation

much more simple than the preceding. It is stated that the portion of the

third son is 3<z, together with the wlh of what remains, and that the property

is thus entirely disposed of ; in other words, the portion of the third son is 3a,

and the remainder just mentioned is nothing.

We found the expression for that remainder* to be

n*x 6an2
2nx-\-4an-\-z a

n
~~*

Equating this quantity to zero, we have

n*x 6an2 2nx4-4anx a-_!-J--_o
n3

ar a=0

This result is, moreover, more simple than the former. We can easily prove

that the two expressions are numerically identical, for, applying to the two

polynomials (6n
3 10ra2+5re l)a, and (n

3 3/i3+3n-|-l), the process for find-

ing the greatest common measure, we shall find that these two expressions

have a common factor n 1 ; dividing, therefore, both terms of the first result

by this common factor, we arrive at the second.

The above problem will point out to the student the importance of examin-

ing with great attention the enunciation of any proposed question, in order to

discover those circumstances which may tend to facilitate the solution ; he will

otherwise run the risk of arriving at results more complicated than the nature

of the case demands.

The above problem admits of a solution less direct, but more simple and

elegant than those already given. It is founded on the observation that, after

having subtracted 3a from the former portions, nothing ought to remain.

Let us represent by r
l , r2 , rs the three remainders mentioned in the enun

ciation ; the algebraic expressions for the three portions must be

r, r, r

a+ , 2a+ , 3a+ .T n 're

1. By the conditions of the problem, we have r3 =0.
Hence the third portion is 3a.

' Next above (3).
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2. The remainder, after the second son has received 2a-{- , may be rep-
71

ra (n I)r 3
resented by r --

, or
n n

But this is the portion of the third son ; hence we have

(n-l)r,-=3a

San

nl
San 3a

Hence the portion of the second son is 2a4- - n=2a+ -> or
1 n 1

' n 1

reducing,

nl
3. The remainder, after the eldest son has received a-\-> may be repre-

r, (n l)r.
sented by r, , or J t-%n n

But this remainder forms the portion of the other two sons
;
hence we have

(n l)r t 2an-j-a= ~T -4- O&
n 1

5an2 2a

ban* 2an San 2a
Hence the portion of the eldest son is a-\- . _ --n~a-\- , _ .

g
.

or, reducing,

an2
-j-3a a

7j*

Hence the whole property is

2an+-~

reducing the whole to a common denominator,

performing the operations indicated, and reducing,

(6tt
2

4n+l)a

the result obtained above.

This solution is more complete than the former, for we obtain at the same

rime the property of the father and the expressions for the portions of his

three sons.

We shall now solve one or two problems in which it is either necessaiy or

convenient to employ more than one unknown quantity.

PROBLEM 11.

Required two numbers whose sum is 70 and whose difference is 16.

Let x and y be the two numbers.

Then, by the conditions of the problem,
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*+y=70 ............ (1)

x-y= l6 ............ (2),

which are the two equations required for its solution.

Adding the two equations,

2x=86
z=43.

Subtracting the second from the first,

2y=54
y=27.

Hence 43 and 27 are the two numbers.

PROBLEM 12.

A person has two kinds of gold coin, 7 of the larger, together with 12 of the

smaller, make 288 shillings ; and 12 of the larger, together with 7 of the smaller,

make 358 shillings. Required the value of each kind of coin.

Let x be the value of the larger coin expressed in shillings, y that of the

smaller.

Then, by the conditions of the problem,

7ar+12y=-288 ......... (1)

And

12x+ 7y=358 ......... (2).

Multiplying equation (1) by 7, and equation (2) by 12,

and subtracting the former product from the latter, . . 95ar=2280

.-. x= 24.

Substituting this value of x in equation (1), it becomes 168+ 12y= 288

.-. y= 10.

The larger of the two qpins is worth 24 shillings, the smaller 10 shillings.

PROBLEM 13.

An individual possesses a capital of 30,000, for which he receives interest

at a certain rate ; he owes, however, 20,000, for which he pays interest at a

certain rate. The interest he receives exceeds that which he pays by 600.

Another individual possesses a capital of S'35,000, for which he receives inter-

est at the second of the above rates ; he owes, however, 24,000, for which
he pays interest at the first of the above rates. The interest which he re-

ceives exceeds that which he pays by 310. Required the two rates of in-

terest.

Let i and y denote the two rates of interest for 100.

In order to find the interest of 30,000 at the rate r, we hare the pro

portion,

30,000x
100 : 30,000 : : x : =300x.

In like manner, to find the interest of 20,000 at the rate of y,

20,000y

But, by the enunciation of the problem, the difference of these two sums is

$800 ; hence we shall have, for the first equation,

300-r 200y=800 . . ..... (1).

Translating, in like manner, the second condition of the problem into alge-

braic language, we arrive at the second equation,
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350t/ 240x=310 ....... (2)

The two members of the first equation are divisible by 100, and those of the

second by 10 ; they may therefore be replaced by the following :

3x- 2y= 8 ........ . (3)

35y 24z=31 ......... (4)

In order to eliminate a:, multiply equation (3) by 8, and then add equation

(4) ; hence

19y=95
.-. y= 5.

Substituting this value of y in equation (3), we have

3z 10= 8

.-. x=6.

Then the first rate of interest is 6 per cent., and the second 5 per cent.

PROBLEM 14.

An artisan has three ingots composed of different metals melted together.

A pound of the first contains 7 oz. of silver, 3 oz. of copper, and 6 oz. of tin.

A pound of the second contains 12 oz. of silver, 3 oz. of copper, and 1 oz. of

tin. A pound of the third contains 4 oz. of silver, 7 oz. of copper, and 5 oz.

of tin. How much of each of these three ingots must he take in order to

form a fourth, each pound of which shall contain 8 oz. of silver, 3| oz. of cop-

per, and 4j oz. of tin ?

Let x, y, and z be the number of ounces which he must take in each of the

ingots respectively, in order to form a pound of the ingot required.

Since, in the first ingot, there are 7 oz. of silver in a pound of 16 oz., it fol-

7
lows that in 1 oz. of the ingot there are oz. of silver, and, consequently, in x

7x
oz. of the ingot there must be oz. of silver. In like manner, we shall find

12y 4z
that -77T, represent the number of ounces of silver taken in the second and

16 1C

third ingots in order to form the fourth
; but, by the conditions of the prob

lem, the fourth ingot is to contain 8 oz. of silver ; we shall thus have

Ix 12 4z

And reasoning precisely in the same manner for the copper and tin, we find

3x 3y 7z 15
4- -4- = . . (2}16^ 16 T 16 4 v '

6x y 5z 17

16+16 + 16
=T .......

which are the three equations required for the solution of the problem.

Clearing them of fractions, they become

128 ....... (4)

z= 60 ....... (5)

z= 68 ....... (6)

In these three equations the coefficients of y are most simple ; it will, there-

fore, be convenient to eliminate this unknown quantity first.
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Multiply equation (5) by 4, and subtract equa-

tion (4) from the product, we have ..... 5or-|-24r=112 . . (7)

Multiply equation (6) by 3, and subtract equa-

tion (5) from the product, we have ..... 15x-\- 82=144 . . (8)

Multiply equation (8) by 3, and subtract equa-
tion (7) from the product, we have ..... 40x=320

.-. x= 8

Substitute this value of x in equation (8) ; it be-

comes ............... 120-f 8z= 144

.-. 2= 3

Substitute these values of x and z in equation

(6); it becomes ............ 48+^+15 = 68

... y= 5

Hence, in order to form a pound of the fourth ingot, he must take 8 ounces

of the first, 5 ounces of the second, and 3 ounces of the third.

PROBLEM 15.

There are three workmen, A, B, C. A and B together can perform a cer-

tain piece of labor in a days ; A and C together in b days ; and B and C to-

gether in c days. In what time could each, singly, execute it, and in what

time could they finish it if all worked together ?

Let x= time in which A alone could complete it.

y= time irfwhich B alone could complete it.

r= time in which C alone could complete it.

Since A and B together can execute the whole in a days, the quantity

which they perform in one day is -
; and since A alone could do the whole

in x days, the quantity he could perform in one day is -
; for the same rea

son, the quantity which B could perform in one day is - ; the sum of what

they could do singly must be equal to the quantity they can do together
hence

111

In like manner, we shall have

111
111
y+z=-c

Subtract equation (3) from (1),

x z a c

Add equations (2) and (4),

21 1 1

'

'

rr
--

r-
ac+oc ab
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In like manner,

"
ab-\-bc ac

2abc

ab-\-ac be'

Let t be the time in which they could finish it if all worked together; then,

by Prob. 8,

fl - -<^

1 1

2abc

(16) What two numbers are those whose difference is 7 and sum 33 ?

Ans. 13 and 20.

(17) To divide the number 75 into two such parts that three times the

greater may exceed 7 times the less by 15.

Ans. 54 and 21.

(18) In a mixture of wine and cider, i of the whole plus 25 gallons was

wine, and ^ part minus 5 gallons was cider ; how many gallons were there of

each ?

Ans. 85 of wine, and 35 of cider.

(19) A bill of $34 was paid in half dollars and dhnes, and the number of

pieces of both sorts that were used was just 100 ; how many were there of

each?

Ans. 60 half dollars and 40 dimes.

(20) Two travelers set out at the same time from New York and Albany,

whose distance is 150 miles ; one of them goes 8 miles a day, and the other 7 ;

in what time will they meet ?

Ans. In 10 days.

(21) At a certain election 375 persons voted, and the candidate chosen had

a majority of 91 ; how many voted for each?

Ans. 233 for one, and 142 for the- other.

(22) What number is that from which, if 5 be subtracted, of the remain-

der will be 40 ?

Ans. 65.

(23) A post is | in the mud, ^ in the water, and 10 feet above the water;

what is its whole length ?

Ans. 24 feet.

(24) There is a fish whose tail weighs 9 pounds, his head weighs as muc

as his tail and half his body, and his body weighs as much as his head and

tail ; what is the whole weight of the fish ?

Ans. 72 pounds.

(25) After paying away | and \ of my money, I had 66 guineas left in

purse ; what was in it at first ?

Ans. 120 guineas.
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(26) A's age is double of B's, and B's is triple of C's, and the stun of all

their ages is 140; what is the age of each?

Ans. A's =84, B's =42, and C's =14.

(27) Two persons, A and B, lay out equal sums of money in trade; A
gains $630, and B loses $435, and A's money is now double of B's ; what did

each lay out ?

Ans. $1500.

(28) A person bought a chaise, horse, and harness, for $450; the horse

came to twice the price of the harness, and the chaise to twice the price of

the horse and harness ; what did he give for each ?

Ans. $100 for the horse, $50 for the harness, and $300 for the chaise.

(29) Two persons, A and B, have both the same income : A saves | of his

yearly, but B, by spending $250 per annum more than A, at the end of 4

years finds himself $500 in debt ; what is their income ?

Ans. $625.

(30) A person has two horses, and a saddle worth $250 ; now, if the sad-

dle be put on the back of the first horse, it will make his value double that of

the second ; but if it be pat on the back of the second, it will make his value

triple that of the first ; what is the value of each horse ?

Ans. One $150, and the other $200.

(31) To divide the number 36 into three such parts that | of the first, | of

the second, and i of the third may be afl equal to each other ?

Ans. The parts are 8, 12, and 16.

(32) A footman agreed to serve his master for <8 a year and a livery, but

was turned away at the end of 7 months, and received only <2 13*. 4d. and

his livery ; what was its value ?

Ans. =4 16*.

(33) A person was desirous of giving 3d. a piece to some beggars, but found

that he had not money enough in his pocket by Sd. ; he therefore gave them
each 2</., and had then 3^. remaining ; required the number of beggars ?

Ans. 11.

(34) A person in play lost of his money, and then won 3s. ; after which,
he lost i of what he then had, and then won 2s. ; lastly, he lost | of what he

then had; and this done, found he had but 12*. remaining; what had he at

first?

Ans. 20*.

(35) To divide the number 90 into 4 such parts that if the first be increased

-by 2, the second diminished by 2, the third multiplied by 2, and the fourth

divided by 2, the sum, difference, product, and quotient shall be all equal to

each other ?

Ans. The parts are 18, 22, 10, and 40 respectively.

(36) The hour and minute hand of a clock are exactly together at 12 o'clock :

when are they next together ?

Ans. 1 hour 5^ minutes.

(37) There is an island 73 miles in circumference, and three footmen aD

start together to travel the same way about it : A goes 5 miles a day, B 8, and

C 10 ; when will they all come together again ?

Ans. 73 days.
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(38) How much foreign bi'andy at 8s. per gallon, and domestic spirits at 3s.

per gallon, must be mixed together, so that, in selling the compound at 9s. per

gallon, the distiller may clear 30 per cent. ?

Ans. 51 gallons of brandy, and 14 of spirits.

(39) A man and his wife usually drank out a cask of beer in 12 days ; but

when the man was from home, it lasted the woman 30 days ; how many days
would the man alone be in drinking it ?

Ans. 20 days.

(40) IfA and B together can perform a piece of work in 8 days ; A and C
together in 9 days ;

and B and C in 10 days: how many days will it take

each person to perform the same work alone ?

Ans. A 14| days, B 17ff, and C 235
7
T .

(41) A book is printed in such a manner that each page contains a certain

number of lines, and each line a certain number of letters. If each page were

required to contain 3 lines more, and each line 4 letters more, the number of

letters in a page would be greater by 224 than before ; but if each page were

required to contain 2 lines less, and each line 3 letters less, the number of let-

ters in a page would be less by 145 than before. Required the number of

lines in each page, and the number of letters in each line.

Ans. 29 lines, 32 letters.

(42) Hiero, king of Syracuse, had given a goldsmith 10 pounds of gold with

which to make a crown. The work being done, the crown was found to

weigh 10 pounds ; but the king, suspecting that the workman had alloyed it

with silver, consulted Archimedes. The latter, knowing that gold loses in

water 52 thousandths of its weight, and silver 99 thousandths, ascertained the

weight of the crown, plunged in water, to be 9 pounds 6 ounces. This dis-

covered the fraud. Required the quantity of each metal in the crown.

Ans. 7 pounds 12^f ounces of gold, 2 pounds 3|| ounces of silver.

(43) To divide a number a into two parts which shall have to each other

the ratio of m to n.

ma na
Ans.

; ,
r .

m-\-n m-\-n

(44) To divide a number a into three parts which shall be to each other

as m : n :p.

Ans.
pa

m-\-n-\-p'
1

m-\-n-\-p' m-\-n-\-p'

(45) A banker has two kinds of change ; there must be a pieces of the first

to make a crown, and b pieces of the second to make the same : now a per-

son wishes to have c pieces for a crown. How many pieces of each kind must

the banker give him ?

a{b c) b(c a)
Ans. -j of the first kind, ; of the second.

b a b a

(46) An innkeeper makes this bargain with a sportsman : every day that

the latter brings a certain quantity of game he is to receive a sum a, but ever

day that he fails to bring it he is to pay a sum 6. After a number n of

days it may happen that neither owes the other, or that the first owes the

second, or that the second owes the first a sum c. Required a formula which
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saall express in all three cases the number of days that the sportsman brought
the game.

&nc
Ans. ar= r .

a+b
In the first case c=0, in the second case we must take the positive sign, in

the third case the negative sign.

(47) If one of two numbers be multiplied by m, and the other by n, the sum
of the products is p ; but if the first be multiplied by TO', and the second by n',

the sum of the products is p'. Required the two numbers.

n'p nyf m.ff m'p
mn' m'n* mn' m'n

(48) An ingot of metal which weighs n pounds loses p pounds when weigh-
ed in water. This ingot is itself composed of two other metals, which we
may call M and M' ; now n pounds of M loses q pounds when weighed in

water, and n pounds of M' loses r pounds when weighed in water. How
much of each metal does the original ingot contain ?

n(r p) n(t) a)
Ans. - -

pounds of M, -
pounds of M'.

r q rq
REMARKS UPON EQUATIONS OF THE FIRST DEGREE.

152. Algebraic formulae can offer no distinct ideas to the mind unless they

represent a succession of numerical operations which can be actually perform-
ed. Thus, the quantity b a, when considered by itself alone, can only sig-

nify an absurdity when a~^>b. It will be proper for us, therefore, to review

the preceding calculations, since they sometimes present this difficulty.

Every equation of the first degree may be reduced to one which has all its

signs positive, such as

ax+b=cx+d (1)

Subtracting cr-f- b from each member, we then have

ax cx=d b.

Whence
d I

x= -
(2)a c

This being premised, three different cases present themselves ;

1. d^>b and a>c.
2. One of these conditions only may hold good.
3. b>d and c>a.
In the first case the value of x in equation (2) resolves the problem without

giving rise to any embarrassment ; in the second and third cases it does not, at

first, appear what signification we ought to attach to the value of x; and it is

this that we propose to examine.

In the second case one of the subtractions, d b, a c, is impossible ; for

example, let b~^>d and a^>c ; it is manifest that the proposed equation (1) is

absurd, since the two terms ax and b of the first member are respectively

greater than the two terms ex and d of the second. Hence, when we en-

counter a difficulty of this nature, we may be assured that the proposed prob-

* We can always change the negative terms of an equation into positive ones by trans-

posing them from the member in which they are found to the other member.



174 ALGEBRA.

lem is absurd, since the equation is merely a faithful expression of its condi-

tions in algebraic language.

In the third case we suppose b~^>d and c^>a; here both subtractions are

impossible ; but let us observe that, in order to solve equation (1), we subtract-

ed from each member the quantity cx-\-b, an operation manifestly impossible,

since each member <^cx-\-b. This calculation being erroneous, let us sub

tract ax-\-d from each member ; we then have

b d=cx ax.

Whence
bd

x= (3)ca
This value of a:, when compared with equation (2), differs from it in this

only, that the signs of both terms of the fraction have been changed, and the

solution is no longer obscure. We perceive that, when we meet with this

third case, it points out to us that, instead of transposing all the terms involv-

ing the unknown quantity to the first member of the equation, we ought to

place them in the second ; and that it is unnecessary, in order to correct this

error, to recommence the calculation ; it is sufficient to change the signs of

both numerator and denominator.

When the equation is absurd, as in the second case, we may nevertheless

make use of the negative solution obtained in this case ; for if we substitute

x for +.r, the proposed equation becomes

ax-\- b= cx-\- d.

bd
Whence x=

a c

a value equal to that in (2), but positive. If, then, we modify the question in

such a manner as to agree with this new equation, this second problem, which

will bear a marked resemblance to the first, will no longer be absurd, and,

with the exception of the sign, will have the same solution.

Let us take, for example, the following problem :

A father, aged 42 years, has a son aged 12 ; in hoiv many years will the age

of the son be one fourth of that of thefather ?

Let or= the number of years required.

42-for
Then -J =12+.r

Thus the problem is absurd. But if we substitute x for -{-x, the equa-

tion becomes
42 a;
- =12 a:

4

and the conditions corresponding to this equation change the problem to the

following :

A father, aged 42 years, has a son aged 12 ; how many years have elapsed

since the age of the son was one fourth of that of the father ?*

Here .r=2.

* As a problem is translated into algebraic language by means of an equation, so an

equation may be translated back into a problem, provided the general nature of the problem
be known.



SIMPLE EQUATIONS. 175

Take another example.

What number of dollars is that, the sum of the third and fifth parts of which,

diminished by 7, is equal to the original number ?

Here l+l'7^'
Whence z= 15.

The problem is absurd ; but, substituting x for -\-x,

which gives

z=15;
and the problem should read, What number of dollars is that, the third and fiftn

parts of which, when increased by 7, give the original number ?

153. With regard to the interpretation of negative results in the solution

of problems, then, we may, from what is seen above, establish the following

general principle :

When we find a negative value for the unknown quantity in problems of the

first degree, it points out an absurdity in the conditions of the problem pro-

posed ; provided the equation be a faithful representation of the problem, and

of the true meaning of all the conditions.

The value so obtained, neglecting its sign, may be considered as the answer

to a problem which differsfrom the one proposed in this only, that certain quan-
tities which were additive in the first have become subtractive in the second, and

reciprocally.

154. The equation (2) presents still two varieties. If as=c, we have

d-b
x-~o~ ;

in this case the original equation becomes

ax-}-b=ax-\-d,

whence b=d ; if, therefore, b be not equal to d, the problem would seem ab-

surd.*

d b m
But the expression

-
, or, in general, .where m may be any quantity,

represents a number infinitely great. For, if we take a fraction , the small-

er we make n, the greater win the number represented by become; thus,

for n=-> r-r* T^TT' ^e results are 2, 100, 1000 times m. The limit is ta-
il J.UU 1UUU

m
finity, which corresponds to =0. Or, we may say, to prove infinite, that

* The absurdity is removed by considering that finite quantities nave no effect when
added to infinite ones ; that, in comparison with infinities, finite quantities are all equal to

one another, and all equal to zero.
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a finite quantity evidently contains an infinite number of zeros. The symbol

for the value of x in this case is

By clearing the expression Tr= of fractions, we have TO=OXGO,

m
which it appears that the product of zero by infinity is finite. So, also, =0,

or the quotient of a finite quantity by infinity, is zero.

155. If, in equation (2), a=c, and b=d, we have

_0

in this case the original equation becomes

ax-\-b=ax-r-b.

Here the two members of the equation are equal, whatever may be the value

of a:, which is altogether arbitrary, and may have any value at pleasure. We
perceive, then, that a problem is indeterminate, and is susceptible of an in-

finite number of solutions, when the value of the unknown quantity appears

under theform -.

It is, however, highly important to observe, that the expression
- does not

always indicate that the problem is indeterminate, but merely the existence of

a factor common to both terms of the fraction, which factor becomes under :

a particular hypothesis.

Suppose, for example, that the solution of a problem is exhibited under the

a3 63

If, in this formula, we make a=5, then z=

* This infinite value of expressions like may be sometimes positive, sometimes nega- |

tive, and sometimes indifferently positive or negative.
m

1. Let there be the formula x=---, in which m and n are two invariable numbers,
(nz)*

which we suppose positive, and different from zero, while z can have all possible values.

Making z=n, we hav"e 3:=. But as the denominator, (n z)
2

, is always positive, what-

ever z may be, the infinity here should be regarded as designating the positive infinity.m
2. By analogous reasoning, we see that if we have the formula x=- and z=n, we

( ~r
should have the negative infinity z= < .

3. Let there be the formula x=- . The hypothesis z=n gives still x=, but here
n z

the infinity will have an ambiguous sign. Suppose, at first, z<w, and cause - to increase,

the formula will give increasing values, which will be all positive. On the contrary, taking

z>ra, then diminishing z till it becomes equal to n, the formula gives increasing values,

which are negative. Therefore, the hypothesis z=n ought to be considered as causing the

formula to take two infinite values, the one positive and the other negative. Tins is indi-

cated by writing d?=-J-ao. The <x> is here the transition value between -J- and . Zero

is also a transition value between -j- and . For, let x=n z : if z<, ami z increase till

z>n, the value of x in changing from -(-to --passes through 0. Quantities in changing

sign must always pass through or < . They may, however, pass through or <x> with-

out changing sign, as in x=(n z)
8
, and ; r.

(n zp
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But we must remark, that a' V may be put under the form (a b)

(a*+a&4-6
3

),
and that a* I- is equivalent to (a b) (a+&) ; hence the

above value of x will be

(a IKai~
(a-b)(a+b)

v if, before making the hypothesis a= 6, we suppress the common far-

tor a 6, the value of x becomes

an expression which, under the hypothesis that a=6, is reduced to

Take, as a second example, the expression

g_6* (a+b)(a-b)

(ab)*(ab)(ab)
;

making a=ft, the value of x becomes x=-, in consequence of the existence

of the common factor a b ; but if, in the first instance, we suppress the com-

mon factor a 5, the value of x becomes

_a+bX ~^b ;

an expression which, under the hypothesis that a=5, is reduced to

_2a_

From this it appears that the symbol
- in algebra sometimes indicates the

existence of afactor common to the tiro terms of OK fraction, which is reduced to

that form. Hence, before we can pronounce with certainty upon the true

value of such a fraction, we must ascertain whether its terms involve a com-
mon factor. If none such be found to exist, then we conclude that the equa-
tion in question is really indeterminate. If a common factor be found to exist,

we must suppress it, and then make anew the particular hypothesis. This
win now give us the true value of the fraction, which may present itself under

A A
one of the three forms ^, , -.

D
In the first case, the equation is determinate ; in the second, it is impossible

in finite numbers ; in the third, it is indeterminate.

Ther^ are other forms of indetermination besides -
; for, whatever be the

values of P and Q. we have

1

Q
=

Q
=

T'

P
P

The first of these equivalents of
pr, where P and Q both equal zero, be-

OD

comes Ox ^j and the second becomes , which symbols must, therefore, be

considered as having the same meaning with -.

M
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DISCUSSION OF FORMULAS FURNISHED BY THE GENERAL EQUATIONS OF THE

FIRST DEGREE, WITH TWO OR MORE UNKNOWN QUANTITIES.

When the common denominator of the general values of the unknown quan

titles reduces to zero, it is not readily seen how the given equations are to be

verified. We shall examine here the particular cases of this kind which may
occur.

Resume the two equations,

ax-{-by=k [1]

a'x+b'y=k' [2]

from which we derive the formulas

Jcb' bk' ok' Tea'

ab' 6a''
"

ab' ba''

First particular Case. Suppose the denominators to be zero aud the nu-

merators not ; then we have

kb' blc' ok' Tea'

ab' ba'=0, x= , y .

The values of a; and y are then infinite ; that is to say, in order to satisfy the

two given equations, they must surpass every assignable magnitude.
ab'

From the equality ab' ba'=0, we derive a'=-j-, and, consequently, the

equation [2], by putting in it this value, becomes

ab'

-jx-}-b'y=k', .. b'(ax-\-by)= bk'.

The first member is the first member of [1] multiplied by b' ; the same re-

lation must subsist between the second members, in order that the value of x

and y may verify at the same time equations [1] and [2]. Hence bk'=kb',

or, kb' ftfc'=0 ; i. c., the numerator of x would be equal to zero, which is

contrary to hypothesis.*

In this way the impossibility of finding values of x and y, which satisfy at

the same time the two given equations, is made apparent ; but this impossi-

bility is still better characterized by the infinite values, which, at the same time

that they indicate the impossibility, show besides that it arises from the fact

that the values of the unknown quantities are too great to be assigned.

If we suppose ab' ba' to be at first a very small quantity, the values of a:

and y will be very great, but they will always satisfy the equations until the

instant ab' ba' reduces to zero, when, if we can not effect in a direct manner

the verification of the equations, it is solely because x and y then surpass all

assignable magnitude. f

Second particular Case. Suppose the denominator to be zero at the same

time as one of the numerators ; for example, that we have

ab' ba'=Q, kb' bk'=0.

I maintain that the other numerator will be also equal to zero; for the

two equalities above give

* The note to art.. 154 explains this anomaly. The finite quantities kb' and Ik1 are equal

vhen compared with infinity.

t Considered in relation to the question, the conditions of which are expressed by tha

problem, infinite values may be sometimes a true solution of the question. The applica

tion of algebra to geometry furnishes numerous examples of this kind
; among others may

be cited that where au angle is unknown, and we find for its tangent an infinite value. It

is clear, then, that the angle must be right.
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f_aV ,,__*&'

and, consequently, the other numerator becomes

akb'^akb'
b b

~

If at first we had supposed this numerator equal to zero, we could have

proved in a similar manner that of x to be so also.

The present hypothesis then gives

__0 _0

Of themselves these symbols indicate indetermination ; I shall prove, by going
back to the equations, that they ought, in fact, to be indeterminate.

For this purpose, substitute in equation [2] the values of a' and k', found

above, and it becomes

ab'
.

kb' b'

Thus we see that it can be formed by multiplying the two members of equa-
b'

tion [1] by -T-; then all values of x and y which satisfy one of the two equations

will also satisfy the other. But if we give to x values at pleasure in equation [1],

we can, by resolving it afterward, find corresponding values of y ; and as these

same values satisfy the second equation, we conclude that the proposed equa-
tions admit an infinite number of solutions.

Let it, however, be observed, that the indetermination in this case does not

permit us to take whatever value of y, and, at the same time, of z, we please,

because the above explication shows that, when one of these unknown quan-
tities is assumed, the value of the other is determined.

The case before us comprehends that in which =0, &':=0, ab' ba'=0,

because then x and y become -. Ifwe return to the equations proposed, they

reduce to these,

ax-\-by^=0, a'z-f-i'y=0.

They give respectively
a a'

But upon the hypothesis of ab' 6a'=0, we derive
-j-=j-:

then the two

values of y are equal, whatever be that of x, and there is veritable indeter-

mination.

Yet it is to be observed, that, if we take the relation of y to r, this relation

is determinate, because we have

y a a'

x
=~b=~b"

a a'
If the condition T=T; had not existed, the two values of y above could Bot

o ft

have been equal, except we suppose x=0 ; y would have been then zero, and

the relation of x and y no longer determinate, but indeterminate.

A similar discussion to the above might be given to a system of three or more

equations, with as many unknown quantities. It would, however, be more
difficult to investigate the cases of impossibility and indetermination, and it is
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not worth while to delay upon them. We shall content ourselves with setting

down here some observations intended to caution the student against certain

hasty conclusions to which he might naturally be led.

We have seen, in the case of two equations with two unknown quantities,

that x and y become infinite and indeterminate simultaneously.

The first error which might be committed would be that of supposing from

analogy that, in the case of several equations, the unknown quantities would

all become infinite or indeterminate together. Suppose, for example, there

are under consideration the three equations

ax -\-by -\-cz =&,
a'x -{-b'y -j-c'z =k',

- a"x+b"y+ c"z=k".

The common denominator of the values of x, y, z, is

R=ab'c" ac'b" -j- ca'b" ba'c"+ be'a" cb'a",

and it may be written in three ways :

n=a(b'c" c'b") +a'(cb" bc")+a"(bc'cb'),
R=5(c'a" a'c") -}-b'(ac" ca")-{-b"(ca' <zc'),

E,=c(a'b" b'a")+ c'(ba"ab")+c"(ab'ba
f

).

Place

b'c"=c'b", cb"= bc".

From these equations we deduce bc'=cb', and, consequently, R becomes

zero. Then the numerator of .T, which is formed from R by changing a, a',

a" into k, k', k", becomes zero also. But as the numerator of y is formed by

placing k, k', k" in R instead of 6, &', b", there is no reason why this numerator

should become zero, unless we make some new hypothesis. The same may

be said of that of z. Thus the value of x can take the indeterminate form -,

where the values of y and z are infinite.

But with regard to this indeterminate form, another error still is to be

avoided, because it may be that the indetermination is only apparent (see

Art. 155). In order to judge better of it, we shall have regard only to the

single relation

c'b"

b'c"=c'b", .. c"=-r;-.

Substituting this value of c" in the general value of x, it will be seen tlint

6C
'

cb' becomes a common factor of both numerator and denominator. But

by hypothesis this factor is zero ; it is its presence, then, which produces the

appearance of indetermination. Suppressing it, we have the true value of x,

which appears no longer indeterminate, unless some new hypothesis be joined

to those already made.*

* An important observation should be made before quitting- the subject of indetermi-'

nation.

When the two terms of a fraction decrease so as to become less than any assignable

quantity, if the suppositions which cause one of them to decrease indefinitely are entirely

independent of those which cause the other to do so, the values of these terms n

taken as near zero as we please, and such that their relation, which is the value

fraction, maybe equal to any quantity whatever ; consequently, the symbol -, at which wo

arrive when the two terms shall have attained the limit of their decrease, will express

complete indetermination. But it may happen that the two terms of the fraction are con

uected together in such a way, that to a very small value of one there corresponds ahvayi
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156. We shall conclude this discussion with the foDowing problem, which

will serve as an illustration of the various singularities which may present

themselves in the solution of a simple equation.

PROBLEM.

Two couriers set off at the same time

from two points, A and B, in the same
p^ T 5 /s

straight line, and travel in the same di-

rection, A C. The courier who sets out from A travels m miles an hour, the

courier who sets out from B travels n miles an hour : the distance from A to

B is a miles. At what distance from the points A and B will the couriers be

together ?

Let C be the point where they are together, and let x and y denote the dis-

tances A C and B C, expressed in miles.

We have manifestly for the first equation

xy=a (1)

Since m and n denote the number of miles traveled by each in an hour, that

is, the respective velocities of the two couriers, it follows that the time re-

quired to traverse the two spaces, x and y, must be designated by , ; these

two periods, moreover, are equal ; hence we have for our second equation
x y=- (2)m n

The values of x and y, derived from equations (1) and (2), are

am an
x= . v= .m n J m n

1. So long as we suppose m^>n, or m n positive, the problem will be

solved without embarrassment. For, in that case, we suppose the courier who
starts from A to travel faster than the courier who starts from B ; he must,

therefore, overtake him eventually, and a point C can always be found where

they will be together.

2. Let us now suppose m<^n, or m n negative, the values of x and y are

both negative, and we have

am anx= , y= .

fl m J n m
The solution, therefore, in this case, points out that some absurdity must exist

in the conditions of the problem. In fact, if we suppose ni<, we suppose
that the courier who sets out from A travels slower than the courier who sets

out from B ; hence the distance between them augments every instant, and it

! is impossible that the couriers can ever be together if they travel in the di-

rection A C. Let us now substitute x for -j-.r, and y for -\-y, in equa-
tions (1) and (2); when modified in this manner, they become

a very small value of the other ; and that, when they converge toward zero, their relation

i converses toward a determinate limit, which it does not attain till the moment that the

two terms vanish, and the fraction presents itself under the form -.* A particular exam-

ple of this last case is the vanishing of a common factor of the numerator and denominator.

QD

^ie tame remark is applicable to the symbol .

CO

* Thi principle is foBy exemplified in the differential calenlw
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yx=a
y

-=y{m n J

equations which, when resolved, give

am c

x= , y= ,n m ^ n m
in which the values of .r and y are positive.

These values of x and y give the solution, not of the proposed problem,

which is absurd under the supposition that m<^n, but of the following, which

is the translation of the changed equations.

Two couriers set out at the same tune from the points A and B, and travel

in the direction B C', &c. (the rest as before) ; the values of x and y mark the

distances A C', B C', of the point C', where the couriers are together, from

the points of departure A and B.

From this problem, as well as that of the father and son above, may be de-

duced the following rule, when the value of the unknown quantity is found to

be negative :

Change the sign of ifie unknown quantity in the first equation, or the one

derived immediatelyfrom the problem ; this changed equation, translated into

common language, will furnish the problem which will give a positive solution.

If the problem be at first enunciated in a general manner, then negative

values of the unknown quantity may be regarded as furnishing a true solution,

but are to be interpreted in a contrary sense. Thus, if positive values repre-

sent distance to the right, negative will represent distance to the
left ; if-posi-

tive express distance upward, negative distance downward ; if the former in-

dicate time future, the latter must indicate time past ; if the one gain, the other

loss ; if the one a rate of increase, the oilier a rate of decrease, fyc.*

3. Let us next suppose m=n ; the values of a: and y in this case become

that is to say, x and y each represent infinity. In fact, if we suppose m=n,
we suppose the courier who sets out from A to travel exactly at the same rate

as the courier who sets out from B ; consequently, the original distance, a, by

which they are separated will always remain the same, and if the couriers

travel forever, they can never be together.f

*
Applications of this use of positive and negative quantities constantly occur in trigo-

nometry and analytical geometry.

t Since m=n, equation (2) gives x=y, and equation (1), in consequence, =0. To un-

derstand this, we must recur to the principle stated in (Art. 154). Wo may here extend a

little the statement there made. All zeros are equal when compared with finite quantities,

but not when compared with one another. Thus, Zx is twice as great as x, though .T he 0;

but 2.r-{-a=.r-j-a=o, if x=0. In the first of these oases one zero, 2.r, is compared with

another, and then they are not equal ;
in the second, both zeros, 2.r and x, are compared

with the finite quantity, n, and then are equal.

Again, x-\-a=x-\-10ax-{-0=x, if a;=oo
;
but 10a is ten times as great as a, when on

connected with infinity. Finite quantities are, therefore, all equal to one another, and all

equa. to zero when compared with infinite ones, but not when simply compared with one

another. It is rare that algebra can be employed to demonstrate moral or rel
'
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4. Let us suppose m=n, and also <z=0 ; the values of x and y in this case

become

T=
o'^
=

o
;

that is to say, the problem is indeterminate, and admits of an infinite number

of solutions. In fact, if we suppose a=0, we suppose that the couriers start

from the same point, and if we at the same time suppose m =n, or that they
travel equally fast, it is manifest that they must always be together, and conse-

quently every point in the line A C satisfies the conditions of the problem.

5. Finally, if we suppose <z=0, and m not =n, the values of x and y in

this case become

1=0, y=0.
In fact, if we suppose the couriers to set out from the same point, and

to travel with different velocities, it is manifest that the point of departure is

the only point in which they can be together.

ADDITIONAL PROBLEMS.

(1) The rent of an estate is greater than it was last year by 8 per cent, of

the rent of that year ; this year's rent is 1890. What was last year's ?

Ans. 1750.

(2) A compaay of 90 persons consists of men. women, and children : the

men are 4 in number more than the women, and the children 10 more than

the men and women together. How many of each ?

Ans. 2*2 men. 18 women, and 50 children.

(3) From the first of two mortars in a battery 36 shells are thrown before

the second is ready for firing. Shells are then thrown from both in the pro-

portion of 8 from the first to 7 of the second, the second mortar requiring a

much powder for 3 charges as the first does for 4. It is required to deter-

mine after how many discharges of the second inortar the quantity of powder
consumed by it is equal to the quantity consumed by the first.

A us. 189 discharges of the second mortar.

(4) The fore wheels of a carriage are 5{ feet and the hind wheels 7J feet

in circumference ; the difference of the number of revolutions of the wheels
is 2000. What is the length of the journey ?

Ans. 39900 feet, or 7|f miles.

(5) Three brothers, A, B, and C, buy a house for d2000 ; C can pay the

whole price if B give him half his money ; B can pay the whole price ifA
give him one third of his money ; A can pay the whole price if C give him
one fourth of his money. How much has each ?

Ans. A 6C1680, B < 1440, C <1280.

(6) The passengers of a ship were | Germans, 1 French, J English,

bat the objection to the doctrine of die special and immediate superintendence of Provi-

dence in the affairs of men, that it implies an incredible degree of condescension in an in-

finite being, finds in the principle above stated a satisfactory refutation. As compared
with infinity, the smallest portion of matter is equal to the greatest, and it is therefore no
more an act of condescension on the part of God to charge himself with the care of an in-

dividual than of a nation with the revolutions of a satellite than with the movements of
* system.
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Dutch, and the residue, amounting to 31, Americans. How many were

there in the whole ?

Ans. 120.

(7) Suppose the sound of a bell to be heard at the distance of 1142 feet in

a second in a still atmosphere, and that a wind is blowing sufficient to occa-

sion a delay of y in time. In how many seconds will the sound reach a dis-

tance of 6000 feet ?

Ans. 6.304.

(8) Quicksilver expands, for each degree of the centigrade thermometer,

s~5T5 f 'ts volume. According to this, how high would the barometer stand

when the temperature is 0, if, when the temperature is 21, it stands at a

height of 27 inches 8^ lines ?

Ans. 27 in. 7T
4
B
5
/T lines.

(9) What degree of heat in a centigrade thermometer would be required
to cause the barometer to rise to 26 inches 8 lines, if raised it to 26 inches

4 lines ?

Ans. 70i|.

(10) A piece of silver, the specific gravity of which is 10^, weighs 84 oz.

How much weight will it lose in water ?

Ans. 8 oz.

(11) In a mass of zinc and copper, weighing 100 pounds, 8 parts are of the

former and 3 of the latter. How much zinc must be added, that the propor-
tions may be as 14:5 ?

Ans. 3||.

(12) At the extremities of two arms of a balanced lever, whose lengths are

16 and 21 feet, two weights are suspended, which together amount to 65

pounds. How much is suspended at each arm ?

Ans. 37//J and 28/8V
(13) The range of temperature of a thermometer during the year was

44^. The ratio of the degrees at which it stood at the extreme points

above and below zero was 7 : 4. What were the points ?

Ans. 28T
3
TV above, 165

6
5 below.

(14) In 4000 pounds of gunpowder there are 3240 less of sulphur than of

charcoal and saltpetre, 2760 less of charcoal than of sulphur and saltpetre.

Hpw much of each of these ?

Ans. Sulphur 380, charcoal 620, saltpetre 3000.

(15) It is required to divide the number 99 into five such parts that the first

may exceed the second by 3, be less than the third by 10, greater than the

fourth by 9, and less than the fifth by 16.

Ans. The parts are 17, 14, 27, 8, and 33.

(16) A and B began trade with equal stocks. In the first year A tripled

his stock, and had <27 to spare ; B doubled his, and had <153 to spare.

Now the amount of both their gains was five times the stock of either. What
was that stock ?

Ans. 6690.

(17) What two numbers are as 2 to 3 ; to each of which, if 4 be added, the

sums will be as 5 to 7 ?

Ans. 16 and 24.

(18) Four places are situated in the order of the letters A B, C, D. The
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distance from A to D is 34 miles. The distance from A to B is to the dis-

tance from C to D as 2 is to 3 ; and one fourth of the distance from A to B,
added to half the distance from C to D, is three times the distance from B to

C. What are the respective distances ?

Ans. AB=12, BC=4, CD=18.

(19) A field of wheat and oats, which contained 20 acres, was put out to a

laborer to reap for 6 guineas (of 21s. each), the wheat at 7 shillings an acre

and the oats at 5 shillings. The laborer, falling ill, reaped only the wheat.

How much money ought he to receive, according to the bargain ?

Ans. <4 11s.

(20) A general having lost a battle, found that he had only half his army

-j-3600 men left, fit for action, one eighth of his men +600 being wounded,

and the rest, which were one fifth of the whole army, either slain, taken pris-

oners, or missing. Of how many men did his army consist ?

Ans. 24000.

(21) A shepherd in time of war was plundered by a parry of soldiers, who
took i of his flock and { of a sheep ; another party took from him i of what

he had left, and | of a sheep more ; then a third party took ^ of what now re-

mained, and i a sheep. After which he had but 25 sheep left. How many
had he at first ?

Ans. 103.

(22) A trader maintained himself for three years at the expense of d50 a

year, and in each of those years augmented his stock by ^ of what remained

unexpended. At the end of 3 years his original stock was doubled. "What

was that stock ?

Ans. 740.

(23) There is a certain number consisting of two digits, the sum of these

digits is 5, and if 9 be added to the number, the digits are transposed. What
is the number ?

Ans. 23.

(24) A coach has 4 more outside than inside passengers. Seven ontsides

could travel at 2s. less expense than 4 insides. The fare of the whole

amounted to <9 ; but at the end of half the journey the coach took up 3 more
outside and one more inside passenger, in consequence of which the fare of

the whole became increased in the proportion of 19 to 15. Required the

number of passengers, and the fare of each kind.

Ans. 5 inside, 9 outside ; fares, 18 and 10 shillings.

(25) The hands of a clock are together at 12 : at what times will they be

together during the next 12 hours ?

Ans. 5^ minutes past 1, 10i minutes past 2, and so on, in each successive

hour 5T
5
r later.

(26) A person sets out from a certain place, and goes at the rate of 11 miles

in 5 hours ; and 8 hours after another person sets out from the same place,
and goes after him at the rate of 13 miles in 3 hours. How far must the lat-

ter travel to overtake the former ?

Ans. 35| miles.

(27) A reservoir which is full of water may be emptied at two cocks. One
i is opened, and | of the water runs out ; another is opened, and the two run-
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ning together, empty the vessel in | of an hour more than was required for

the first cock alone to empty the fourth part. If the two cocks had been

opened at the commencement, the reservoir would have been emptied in J of

an hour sooner. How long would it have taken the first cock, running alone,

to empty the reservoir ?

Ans. 4 hours.

INDETERMINATE ANALYSIS OF THE FIRST DEGREE.

157. If there be proposed for solution one equation of the first degree, con

taining two unknown quantities, any value at pleasure may be given to one of

the unknown quantities, and the equation will make known a corresponding

value for the other ;
from which it appears that the equation admits of an

infinite number of solutions. The number of solutions will, however, not be

eo unlimited, if it be required that the values of x and y shall be whole num-

bers ; and still less so, if they must be both entire and positive.

Let there be the equation

a, b, c being any whole numbers whatever, either positive or negative ;
ana as

all the factors common to these three numbers could be suppressed, suppose

this to have been done.

And first, let it be observed, that if there should remain now a common fac-

tor in a and &, the equation could not admit of a solution in whole numbers ;

for whatever values might be substituted for x and y, the first member would

be divisible by this common factor of a and b, while the second member would

not, and the equality would therefore be impossible : a and b must therefore

be supposed prime to each other.

158. Take, for example, the equation

24x+65i/=243 ......... (1)

in which the coefficients 24 and 65 are prime to each other.

Resolving it, with respect to or,

243 65w 3 17v
x--- = 10 27/4---.

24 "T 24

In order that x and y may both be whole numbers, and, at the same time,

3 17-H

satisfy the given equation, it is necessaiy that should be a whole

number.

Representing this by t, we have

24

and

x=W 2y+t ...... (3)

The solution of the given equation in whole numbers then reduces itself to

the solution of the equation (2).

We resolved the given equation with respect to the unknown quantity which

had the least coefficient ; doing the same with (2),

3 24< 371
"IT"" '

17
''

and proceeding as before,
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3 7t

17
(A\

The solution of (2) in whole numbers depends on that of (4), which, re-

solved with respect to t, gives

3 17f 3 3t'

-^- -
3 3t'

(6)

t= W+t" (7)

Continuing in the same way,
3 71" <"

fj
-i ^_2/"^_o ~ A ** oO O

J=*"' (8)

f 1 Of" f" /Q\
( =i M ^t ...... ^yj

Equation (8) gives

t"=3f" (10)

The solutions of the given equation in whole numbers are therefore obtained

by giving to the indeterminate quantity f" all possible values in whole num-

bers, positive or negative ; and for each of these values of V", the equations

(10), (9), (7), (5), and (3), determine successively the values of the indeter-

minate quantities t", t', t, and of the unknown quantities y and x. The equa-
tion is therefore resolved in the manner required.

Formulas may be obtained which give immediately the values of x and y m
terms of f". For, substituting the value 31'" of t" in (9), we find I'=1 7f" ;

substituting this value of t' and that of t?' in (7), we find t= 2-f-17'"' ; sub-

stituting this last value and that of t' in equation (5), we find y=3 24i'", and

from (3), z=2+65"'.
These last two expressions give all the entire solutions of the proposed

equations by attributing successively to f" all possible values in entire num-

bers, positive or negative.

159. The same process with the general form

would run thus,

Dividing a by b, and calling q the quotient, r the remainder,
c (*>q+r)x crx

y=--j
=

make
c rx c "bt

, ._ .....

Calling q-
the quotient of b by r, and r* the remainder,

make

cr't crf
=<',.,*= -... .(3)
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And calling q" the quotient of r by r', and r" the remainder,

c r"V
t==_q t

'+ t

make

c r"t'

and so on. The process is now evident, and it will be perceived that the co-

efficients r, r', r", which enter into the equations (2), (3), (4), are the suc-

cessive remainders which would be obtained in operating as if to find the com
mon divisor of a and b. We must at length arrive at a remainder 1, because

a and b are supposed prime to each other.

For the sake of being more definite, let r" be supposed to be this remainder

then equation (4) gives

t'= r't"+c .......... (5)

By means of equations (2), (3), (4), and (5), the values oft/, x, t, and t' may
be written as follows :

y= qx + t

x=q't +t'

t=q"t'+ t"

l'= r't"+c.

This series of equations shows that any entire value being assumed for t",

the resulting value of t' substituted in that of t, the values of t, t' in that of x, and

the values of .r, t in that oft/, the proposed equation is resolved in whole numbers.

160. The success of the method is founded on the progressive diminution

which division effects upon the coefficients of the indeterminates ; there is no

reason, however, why the constant term, found in the successive equations,

should not also be divided. In this way the calculation will involve smaller

numbers, an advantage which is not to be neglected.

For example, take the equation

3x 8y=43.
As the multiplier of x is less than that of y, resolve the equation with refer-

ence to x,

8t/+43*=-.
Dividing 8 by 3, the quotient is 2, and the remainder 2

;
and dividing 43 by

3, the quotient is 14, remainder 1 ; then

t=2t'+l,
in which last equality t' may receive all possible entire values. By means of

this value may be found

Giving to t' the values 0, 1, 2, 3, ... we find



INDETERMINATE ANALYSIS OF THE FIRST DEGREE. 189

y= 1, 4, 7,10,...

x= 17, 25, 33, 41,...

V may also receive the negative values

1, 2, 3,...

161. In the above example, the values of y and x form two arithmetical pro-

gressions, the first of which has the common difference 3, the coefficient of x

in the proposed equation : and the second the common difference 8, the co-

efficient of y taken with the contrary sign. This proposition may be seen to

be general by effecting the successive substitutions 14- the general solution,

but the following demonstration is preferable.

It appears, from the general investigation already made, that the equation

ax+by=c ........... (1)

admits of an infinite number of solutions in whole numbers, whatever may be

the signs of a and 6, provided they are prime to each other. Suppose one of

these solutions to be

ar=A, y=E.
These values must satisfy the given equation (1), thus,

Subtracting this equality from (1), we have

o(x-A)+6(y-B)=0
. a(A-x)

.-.y=B+ ^ .

The values of z are to be whole numbers, and such that y shall also be a

whole number. Then the product a(A x) must be divisible by b ; but a is

prime with 6, (A x) is, therefore, a multiplier of b (see Art. 84, Note), hence

we may write

A x=bt;
t being some whole number. From whence

z=A bt, y=B+ at.

These formulas exhibit the law of the values to be obtained for x and y,

when there are given to / all entire values successively. If t be taken equal
to 0, 1, 2, 3, ---- there results

x=A, A 6, A 26, A 36, &c.

7/=B, B+ a, B+2a, B+3a, &c.

In general, when t increases by unity, y increases by a, and x by 6.

The solutions in whole numbers, tiien, of the equation ax-f-by=c, are the cor

responding terms of two progressions by differences. In the progression be-

longing to each of the indeterminates, x and y, the common difference is equal to

the coefficient of the other indeterminate. But it is necessary to be careful to

take one of the coefficients vritii the same sign Oiat it has in the equation, and
the other with the contrary sign.

It is immaterial which of the coefficients is taken with the contrary sign,

because in the formulas which express x and y the signs of bt and at may
be changed, since t can receive all possible values, positive and negative.

IG'2. In the general equation, if c=0, so that

ax+by=0,
as one solution is evidently x=0, y=0, the general formulas become

x=bt, y= at.
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163. Again, suppose c to bo a multiple of a or b. Let c=W, then

ax-\-by=bd.
One solution is evidently z=0, y=d ; hence the general values are

==&, y=d at.

Example, bx 7y=21.
The evident solution is z=0, y= 3, and the general values

x=7t, y= 3+5<.
164. We shall point out two simplifications which may sometimes be made

in the calculations. An example will explain them.

80x 17i/=39.

Resolving it with respect to y,

SOar 39
y= 17

'

If 80 be divided by 17, 80= 17 X 4+ 12 ;
but as the remainder, 12, exceeds

half the divisor, 17, we observe that we may write

80=17X(4+1)+ 12 17=17X5 5;

that is, augmenting the quotient by unity, we have a negative remainder less

than half the divisor, which causes a more rapid reduction in the numbers.

The 39, divided by 17, leaves a remainder +5, which it is unnecessary to

change. We have then

(17X5 5)x 17X2 5 5x4-5
y=- -fc- -=5*-2

-j^-.

But another simplification now presents itself, from the fact that 5 is a factoi

of 5x-\-5, and this numerator may be written 5(.r-|-l). In order to rendei

5(:r -f-1) divisible by 17, it is only necessary to take r+1, any multiple what-

ever of 17. Whence the auxiliary equation

x+I= 17t;

RESOLUTION OF THE EQUATION aX-\-by:=C IN NUMBERS BOTH ENTIRE ANB

POSITIVE.

165. We begin as if the values of x and y were required to be entire only,

and thus derive, as before, expressions of the form

x=A bt, y=B-}-a.
But now, instead of attributing to t all possible values in whole numbers, we

choose only those which will render x and y positive. Hence there result for

t certain limitations which are always easy to determine.

First, let us consider the case where a and b have the same sign in the

equation

ax+by=c ........... (1)

Suppose a and b positive ; for if they were both negative, they might be

rendered positive by changing all the signs of the equation. We must also

suppose c to be positive, otherwise the equation would be impossible in posi-

tive whole numbers.

Write the general values of x and y under the following form :

B\

Then we perceive that, to render x positive, it is necessary, and is sufficient,

A B
to take <<T-> and likewise, in order that y may be positive, to take <>
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The signs > and < do not exclude equality ; that is to say, if the first limit

were a number n, we might make t=n. The corresponding value of x would

be T=0.

166. Since i must be an entire number between two limits, it follows that

the number of solutions of the equation is also limited.

And this is evident from the equation itself; for a and b being positive, if

we substitute for x and y positive numbers, the two terms ax-\-by will be al-

ways positive ;
and as their sum has to remain constantly equal to c, it is im-

possible that either of these terms should increase indefinitely.

It may happen that there is no whole number between the limits assigned

above for t ; then we conclude that the equation is impossible. Such a case

would happen if the limits should be embraced between two consecutive whole

numbers like these, <>4| and <<4f ; or, again, if they were contradictory,

as, for example, <^>4l and <C3f.

167. In the second place, consider the case in which a and b are of contrary

signs. Suppose the equation in question to be

ax by=c ........... (2)

in which a and b represent two positive numbers. Then the general values

of x and y are of the form

But we can write them
B

And we perceive at once that to have x and y positive, we must have, at the

same time,

,>:^ art >:=?.

that is to say, we may attribute to t all entire values above the greatest of

these limits without excluding equality, if this limit is an entire number.

By this we perceive that the equation ax by=c admits always of an infinite

number of solutions, while the equation ax-\-by=c admits of but a limited

number, and even may not have any.

Let us apply what precedes to some problems.

168. PROBLEM I. A company of men and icemen expend at a feast 1000

francs. The men pay each 19 francs, and the women 11 francs. How many
men and how many women are there 1

Let x represent the number of men and y the number of women. We
have to resolve in entire numbers the equation

19:r+lly=1000 ........ (3)

In making the calculation, as in (160), and profiting by the simplifications in-

dicated by (Art. 164), we have successively,

1000192; 3x 1

y=-n
-=91-2:r+-n-=91-2r+

3-r 1= 11*

1 t

lt=3t'
t=l3t'.

Arrived at this point, we return to x and y, and they become
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= 4 lit'

2/
= 91 2x+t=9l 2(4 1U')+ (1 3i')

Thus, the general formulas which express x and y in terms of t' are

In order that x may be positive, it is necessary and sufficient that we have

lit' <4, or 2'<CT
4
T '

an(* m order that y should be also positive, it is necessary

and sufficient that we have 19i'> 84, or f> 4T
8
^. Then we must take

',

one of the series of values,

t'=0, 1, 2, 3, 4.

To these values correspond

ar=4, 15, 26, 37, 48

i/=84, 65, 46, 27, 8.

The number of solutions is limited, as we ought to expect, since, in the

equation (3), the terms containing x and y are of the same sign.

There are five solutions in all, to wit ;

1st solution, 4 men and 84 women.

2d solution, 15 men and 65 women.
3d solution, 26 men and 46 women.

4th solution, 37 men and 27 women.

5th solution, 48 men and 8 women.

REMARK. From what has been said at (161), it is sufficient to procure a

single solution of the equation (3) to form immediately the general values of x

and y. Thus, after having found above =1 3t', we make t'=Q ; aud if we

calculate the corresponding values t=l, x=4, y= 84, it is evident that the

values x=4, i/
= 84, ought to form one solution of the equation ;

then we can

place immediately ar=4 Hi', y=84-}-l9t'.

169. PROBLEM II. With two measuring rods of different lengths, the one 5

feet, and the other 7, it is required to make, by placing them the one after the

other, a length of 23 feet.

This problem requires the solution in whole numbers of the equation

5x+7y=23.
We derive from it successively

23 7

=5i

y=5t-l
x=6 7t

In order that y may be positive, we must make i>J ; and that x may b6

positive, /<Cf. As no whole number falls between | and %, we conclude that

the problem is impossible.

REMARK. The equation would have had an infinite number of solutions if

negative values had been admitted. For example, if <=0, we have x=i>.

y= 1. This solution indicates that by placing one of the rods, that of 5 feet,

6 times in succession, and placing afterward the rod of 7 feet, so as to cut off

its length from the end of the distance thus obtained, the remainder would be

the required length, 23 feet.

170. PROBLEM III. A person purchased some hares and sheep. Each

hare cost him 8 shillings, and each sheep 27. He found lha{ he had paid for
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(he hares 97 shillings more than far the sheep. How many hares did he pur-

chase, and how many sheep 1

8x27y=97
27w+97

3y+l=8t

t+l=3t'
t=3tfl.

By making t'=0, we have t= 1, y= 3, =2. And the general values

are

x=27J'+2, y=8f 3.

The values of x and y having to be positive, these formulas show that f

ought also to be positive, and large enough to cause 82'> 3, or f>|. We may
then give to f all the values i'=l, 2, 3, &c., to infinity ; and we form, conse-

quently, the table,

f= 1, 2, 3, 4, dec.

x=29, 56, 83, 110, &c.

y= 5, 13, 21, 29, &c.

The problem admits of an infinite number of solutions ; and the answer is,

that there are 29 hares and 5 sheep, or 56 hares and 13 sheep, or 83 hares

and 21 sheep, &c.

171. PROBLEM IV. Tofind a number such thai, in dividing it by 11, there

remains 3, and dividing it by 17, there remains 10.

Let the number be represented by N, then

N=llar+3 and N=17y+10
.-. llz+3=17y+10 ...... (6)

Proceeding as before,

=11U

,,--- o/_ i _y 6 6

t+l=6t'
t=6t'l.

The hypothesis f=0 gives t= 1, y= 3, x= 4 ; and then we conclude

immediately that

x=17l' 4, y=llt' 3.

We can not take I' negative, nor even f=0, because x and y would become

negative; but we may take i'=l, 2, 3, &c., to infinity.

If we wish formulas in which we can give to the indeterminate all entire

positive values setting out from zero, all that is necessary is to change f into

i 6 being the new indeterminate. Then we have

x=13+170, y=8+110.

By means of these values, we find

N=llx+ 3=11(13+ 170)+ 3=146+1870
N=17y-klO= 17( 8+110)+10= 14G+1870.

These two expressions are equal, and they should be, since equation (6) has
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been formed by equating the values of N. We perceive that there is an in-

finity of numbers which fulfill the two conditions enunciated, and that they are

all represented by the formula

N= 146+1870,
in which 6 is an indeterminate, which may receive all positive values beginning
with zero.

It is easy to show that this number N satisfies the enunciation ; that is to

say, that if we divide it by 11, the remainder will be 3, and if by 17, the re-

mainder will be 10 ; for we have

N 3 N 10- =170+13+-, and -=110+8+-.

172. PROBLEM V. To find a number siich that, dividing it by 11, there

remains 3 ; dividing by 17, there remains 10 ; and dividing it by 37, there re-

mains 13.

In the preceding problem we have found the numbers which fulfill the

first two conditions. Putting x for 0, which we may do, since can be any
positive whole number, this formula becomes

N=146+187.r ........ (8)

But in order that the number N may fulfill the third condition, we must
have N=37T/+13. Then we have the equation

37t/+ 13= 146+187*.
Then

187*+ 133 2z+22

a;+ll=37<
x=37t 11.

In order that x may be positive, we must give to t only positive values above

zero. But in making =1+ 0, we can attribute to all the entire positive

values beginning by zero. By this change x becomes

z=26+370.
And by substituting this value in formula (8), we obtain

N=5008+69190.
Such is the general formula of the numbers which satisfy the three condi

tions enunciated.

173. The determination of the limits led to the necessity of finding (165)
the values of the final indeterminate t, which render positive expressions of

fhe form A -\-bt, or, in other terms, which are such as to make

Transposing the term A,

bt> A.

If b is positive, dividing by 5,

But if b is negative, the division by b changes the signs of the inequality
and the two members are unequal in the contrary sense

; i. e.,

A
-T

Suppose, more generally, that we have the inequa^ty

at+b>ct+d.
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By the transposition of the terms,

(a c)t>d b.

Then, according as a c is a positive or negative quantity, we derive

db db
t> ,orK .

a c a c

This process is called resolution of inequalities. The whole subject of in

equalities will be found treated in a subsequent article.
*

174. RESOLUTION is WHOLE NUMBERS OF SEVERAL EQUATIONS OF THE
FIRST DEGREE, WHEN THE NUMBER OF EQUATIONS IS LES5 THAN THAT
OF THE UNKNOWN QUANTITIES.

Let there be for resolution the equations

2x+14y 7z=341 (1)

lOr-f- 4y+9z=473 (2)

If we multiply the first equation by 5, and afterward subtract the second,

we shall have

66y 44z=1232.

Or, dividing by 22,

3y 2z=56 (3)

But the entire values of y and z, which suit the proposed equations, ought
also to satisfy this ; consequently, applying to it the method already known,
we have

y=2f, z=3t 28.

If we had but equation (3), we should have its solutions in whole numbers,

by giving to t all the whole-number values possible. But this equation takes

the place of only one of the proposed, so that it is necessary that the values

of y and z should be such that, in adding to them certain values of x, which

must also be entire, one of these proposed equations shall be verified. For

this reason we substitute the preceding values of y and z in equation (1), and

seek for the entire values of x and /, which belong to the resulting equation.

The substitution gives

2x+7<=145;
and from this we obtain, designating by t' any whole number whatever,

z=69+7<', t=l 2f.

Then place the value t=l 2f in those of y and z, and you find the un-

known quantities x, y, z expressed in terms of f, to wit :

x=69+7f, y=2 4f, z= 25 6f.

These formulas make known all the entire values which satisfy the equa-
tions proposed.

If it be desired besides that these values should be positive, t must be so

chosen that

69+7f>0, whence f> 9|;
2 4f>0, whence f< i

;

25 6f>0, whence f< 4J.

From this we find the only values which can be attributed to t' are t'= 5,

6, 7, 8, 9. By substituting these numbers, we shall have five solu-

tions in positive whole numbers :

z=34, 27, 20, 13, 6

y=22, 26, 30, 34, 38

2= 5, 11, 17, 23, 29.
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175. The preceding example shows sufficiently the method to be pursued
in resolving equations of the first degree in positive whole numbers, when the

number of unknown quantities exceeds that of the equations. But, to leave

nothing to be desired, I shall indicate the method to be pursued in the case

of three equations.

Let there be, then, between the unknowns x, y, z, u three equations of the

1st degree, which I will name collectively the equations [A].

By the elimination of x we shall find between y, z, and u two equations of

the 1st degree : I shall name them [B].

By the elimination of y we shall deduce from these last an equation of the

1st degree between z and u: I shall name it [C].
From the equation [C] we derive z and u expressed in function of an aux-

iliary indeterminate t.

These values being substituted in one of the equations [B], we derive from

it an equation between y and , and from this the values of y and t in function

of a new indeterminate t' ; consequently, we can also express z and u in terms

oft'.

Finally, these values of y, z, u being carried into one of the equations [A] ,

there will result an equation between x and t', which will enable us to find x

and t', .and, consequently, y, z, and M, in function of a new indeterminate t".

When the equation is to be resolved in whole numbers of any sign what-

ever, we may attribute to the final indeterminate t" all possible values in

whole numbers. But when the solutions are to be restricted to such as are

at the same time entire and positive, there will exist for t" limitations which it

will be always easy to assign.

176. When we have two more unknowns than equations, or several more,
the indetermination is still greater ; but the condition of having values which
shall be at the same time entire and positive, may limit considerably the num-
ber of solutions. We shall confine ourselves to two examples, which will suf-

fice to show how the method explained above should be modified in such cases.

Given to resolve in positive whole numbers the equation

10*+ 97/4-72= 58 ....... (4)

As the unknown z has the smallest coefficient, I derive

58 9y Wx
~~7 ;

and, effecting the division as far as possible,

2 2y 3x
z=8-y-x+-1

-
.

The numerator 2 2y 3x must be a whole number, divisible by 7
; there-

fore I place

22y3x=7t;
23x7t x+t

' y=-g
-=l-*-3<--

f- ;

and, x-\-t being obliged to be a whole number divisible by 2, I place, also,

and, going back to y and z, we express these unknowns in function of t and I'.

We have thus the three formulas

... (5)



INDETERMINATE ANALYSIS OF THE FIRST DEGREE. 197

In order to have the entire and positive solutions of the proposed equation

(4), we must give to t and V all the entire values, which satisfy simultaneously

the three conditions

i+2'>0, 1 2t 3f>0, 7-HH-r>0 .... (6)

From hence result limitations for t and tf, which win be discovered by em-

ploying for these inequalities operations altogether analogous to those of elimi-

nation. For greater neatness, suppose the signs > exclude equality ; that is

to say, that none of the three unknowns, x, y, and z, can be zero.

First, if we multiply the 1st by 3 and the 2d by 2, they become

3*+6i'>0, 2 4t

adding, t' disappears, and we have

2

A similar elimination between the second inequality and the third gives

22+10>0.-. *> 2.
We see that the indeterminate t is embraced between the limits 2i and

f ; then we should take only
t= 2, 1, 0.

Let us consider each of these values successively.

1. If we make t= 2 in the three inequalities (6), they become

, 5 3f>0, _

As there is no whole number between 1 and If, it follows that the value

t= 2, which furnishes these limits for f, ought to be rejected.

2. Ifwe make <= 1, the three inequalities (6) become

, 3 3f>0, 3+f>0 ;

Between i and -j-1 there is no other entire number except ; then we
can take t= 1 and t'=0.

3. If we make f=0, the inequalities become

.-.t'>0, f<, f>-7.
Between and 1 there is no whole number ; consequently, the value t=0

ought also to be rejected.

The only values of t and t' to which positive values in whole numbers of x,

y, and z correspond are, then, t= 1 and '=0. By substituting them hi

the formulas (5), we obtain

x=l, y=3, 2=3,
and this solution is the only one admissible.

177. For a second example, I propose the two equations

6x+ 7!/-r-3z+2tt=100

24x+12y+7z+3u=200.
Eliminating u, we have

30x+3y+5z=100.
As in this equation the terms 30.r and 100 are divisible by 5, it will be best

to take the value of z : tliis is

From which we see that y ought to be a multiple of5 ; consequently, we have

y=bt
:=QO 6x 3t ;
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then, by substituting these values in the first of the two proposed equatioa

it becomes

6z-f35-j-60 18.r 94-2tt=100 ;

or, rather,

12x4-26^4-2w=40;
.-. =20 4-6z I3t.

The three unknowns, y, z, M, are thus found expressed in functions oi a,

and of the indeterminate auxiliary t.

In order to resolve the two proposed equations in positive numbers, it is evi-

dently necessary to take x and t positive, since x is one of the primitive un-

knowns, and since y=bt. But it is necessary to satisfy also the inequalities

20 6x 3>0, 20+6x 13f>0.

In adding them, x disappears, and there remains

40 16>0.-. <2|;
then the values which we ought to give to t are i=0, 1, 2.

With the value =0 we should have

3/=0, 2=20 6x, u=2Q+ 6x;

and we see that we can make .r=0, 1, 2, 3. From whence result for the

proposed equations

{x=

fx= 1

3/= I y=
z=20 ]z=14
u=20 (u=26

With the value t=l we should have

y=5, z=176x, =
and the only admissible values of x are x=0, 1, 2. Thence result the three

solutions

{x=

(x= 1

y= 5 \y= 5

z= 17 )z=ll= 7 (u=l3

Finally, with the value t=2 we should have

y=lO, z= 14 6.r, u= 6+6x.
The only admissible values of x are x=l, 2; and from thence result the

two further solutions

(x=

1 (x= 2

y=W I y=W
z= 8 1z=2
= (u= 6.

In aD, nine solutions. There would be but three if those were excluded in

which one of the unknowns is zero.

EXAMPLES.

1. Two countrymen have together 100 eggs. The one says to the other,

If I count my eggs by eights, there is a surplus of 7. The second answers,

If I count mine by tens, I find the same surplus of 7. How many eggs had

each?

Ans. Number of eggs of the first, =63 or 23; of the second, =37 or 77.

2. To find three whole numbers such that, if we multiply the first by 3,

the second by 5, and the third by 7, the sum of the products shall be 560 ;
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and such, moreover, that if the first be multiplied by 9, the second by 25, and

the third by 49, the sum of tbe products shall be 2920.

Ans. First number, =15 or 50.

Second number, =82 or 40.

Third number, =15 or 30.

3. A person purchased 100 animals at 100 dollars: sheep at 3^ dollars a

piece ; calves at 1 } dollars ; and pigs at i a dollar. How many animals had he

of each kind ?

Ans. Sheep, 5, 10, 15.

Calves, 42, 24, 6.

Pigs, 53, 66, 79.

4. In a foundry two kinds of cannon are cast ; each cannon of the first sort

weighs 1600 Ibs., and each of the second 2500 IDS. ; and yet for the second

there are used 100 Ibs. of metal less than for the first. How many cannons

are there of each kind ?

Ans. Of the first, 11. 36...; of the second, 7, 23....

Or, of the first, 11+25* ; of the second, 7+16*.

5. A farmer purchased 100 head of cattle for 4000 francs, to wit: oxen at

400 francs apiece, cows at 200, calves at 80, and sheep at 20. How many had

he of each ?

Ans. In excluding the solutions which contain a zero the problem admits of

the ten following :

Oxen, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4.

Cows, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2.

Calves, 24, 21, 18, 15, 12, 9, 6, 3, 5, 2.

Sheep, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92.

QUADRATIC EQUATIONS.
178. Quadratic equations, or equations of the second degree, are divided

into two classes.

I. Equations which involve the square only of the unknown quantity.
These are termed incomplete or pure quadratics. Of this description are the

equations

Is 5 7 S^Q
0^=6; 3^+12=150-*; -_-+3**=-+ 2**+ ;

they are sometimes called quadratic equations of two terms, because, by trans-

position and reduction, they can always be exhibited tinder the general form
ax-=b.

Thus the third of the equations given above,

z3 5 7 259_--+*_+*,+_,
when cleared of fractions, becomes

8x 10+72xa=7+48*3
+259,

or, transposing and reducing,

32z=276,
which is of the form
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II. Equations which involve both the square and the simple power of the

unknown quantity. These are termed adjected or complete quadratics. Of

this description are the equations
5x2 x 3 2.r 273

they are sometimes called quadratic equations of three terms, because, by

transposition and reduction, they can always be exhibited under the general

form

ax*-\-bx=c.

Thus, the third of the equations given above,

5.r2 x 3 2z 273

when cleared of fractions, becomes

lOz3 6*4-9=96 8.r12z2
+273,

or, transposing and reducing,

22z2+2z=360,
which is of the form

SOLUTION OF PURE QUADRATICS CONTAINING ONE UNKNOWN QUANTITf.

179. The solution of the equation

presents no difficulty. Dividing each member by a, it becomes

2_z>*2=
a'

whence

If - be a particular number, either integral or fractional, we can extract its

square root, either exactly or approximately, by the rules of arithmetic. If

- be an algebraic expression, we must apply to it the rules established for the

extraction of the square root of algebraic quantities.

It is to be remarked, that since the square both of -\-m and m is -f-m
3
,

/ Iby ( Iby b

so, in like manner, both l+./ZJ an(i
\ ,/~)

ls +" Hence the above

equation is susceptible of two solutions, or has two roots ; that is, there are

two quantities which, when substituted for x in the original equation, will ren-

der the two members identical ; these are

Ib Ib

x= - and x
Ib= -

;V"
for, substitute each of these values in the original equation oz2=&, it becomes

/ lb\* b
ax \+J~) = 6

> or aX-=&, i- e., 6=6,

and
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Hence it appears that in pure quadratics the two values of the unknown

quantity are equal with contrary signs.*

EXAMPLE I.

Find the values of x which satisfy the equation
41s 7=3^+9.

Transposing and reducing, a?=16

= 4;

hence the two values ofx are +4 and 4, and either of these, if substituted

for i in the original equation, will render the two members identical.

EXAMPLE II.

z3 5z" 7 299

~3~
3+T2=24~:cS+~24

T'-

Clearing of fractions, &r* 72+10**= 7 24zs+29&
Transposing and reducing, 423?=378 .

378

^=12
= 9

.-. x=3,
and the two values of a: are +3 and 3.

EXAMPLE III.

3xs=5
5

3

Since 15 is not a perfect square, we can only approximate to the two values

of x. We find the approximate values to be

z= 1.290994, or 1.290994.

EXAMPLE IV.

X

Clearing of fractions, x =.m -y/ r- -\- x-

Squaring, (m
s+27+l)z-=m2

(r
3
+3*),

.-. (2m+l)x
2=mrs

mr

* One might suppose that in extracting the square root of both members of such an equa-
tion as aft=b, the double sign should be prefixed to x, the root of a?, also. But it is to

be observed, that it is the value of -\-x that is required. Besides, suppose we were to write

rjrz=rj:-v/6 ; combining these signs in all possible ways, there result the four equations,~

the last two of which may be deduced from the first two by changing the signs of the two
members ; the equation -j-x=j-V'^ expresses nothing more, therefore, than the equation

We might always omit J^, since it is implied before \/ .
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EXAMPLE V.

m-j-z-j- i/2mx-\-x'
2- =M.

m-\-x -\/2wix-|-x
3

Render the denominator rational by multiplying both terms of the fraction

by the numerator, the equation then becomes

(m-fx+ -y/2-
ms

Extracting the root,

Transposing, -JZmx-\-x*=^m i/n (m+x).

Squaring, 2ma:+z
2=m2 ^2m T/n(m+x)-)-(m+x)*.

Transposing and reducing,

2m v/wix=
m+x r=

f

-

72 v ft

ar+7 a: 7 7X------= 0. Ans. x=
xs_7a; x3 7o: x3 73

(6) ll(x
2

4)=5(x
2
+2). A.ns. =

(8)

7

m4- V? x* x
i /T, 9

! i =-. Ans. x= -\/2mn n2
.

x n

*+Jp-2_ /;=0 . Ans . x=

180. In the same manner we may solve all equations whatsoever, of any

degree, which involve only one power of the unknown quantity ;
that is, all

equations which are included under the general form

ox"=6,

or equations of two terms.

For, dividing each member of the equation by a, it becomes

b
S :.

"=-.
/ + a

Extracting the n"' root on both sides,

If n be an even number, then the radical must be affected with the double

(/6\n
/ /6\

n

+/-j and (y-) will equally pro

duce -.
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EXAMPLE XI.

203

Here +2 and 2 are two of the roots of the above equation

EXAMPLE XII.

,

Or,

Squaring,

Extracting the cube root,

(p+xf=x*.-.

.'. T

V -1,

EXAMPLE XIII.

Ans. x i

EXAMPLE XIV.

- 1=64.

Extracting the cube root, we have

/5 V5
4^-1=4 ...y^^.

EXAMPLE XV.

*-y= 3

Cubing the latter equation,

rJSz^+Szy2
y*= 27,

but ^_ y
3=117.

.-. by subtraction, 3x*y 3it/
9 = 90,

and xy(xy) = 30;

dividing by (2), we have .. xy = 10.

Now from (2)

and

.-. by addition,

and

but (2)

(1)

(2)

Is 2xy+y*= 9,

4ry = 40.

a^+2ry+y2= 49,

z4-y=7,
x y = 3.

By addition,

and by subtraction

_
2z = 10, or 4,

.-. x = 5, or 2,

2y = 4, or 10,

.-. y = 2, or 5.
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(16) 4x*-2=2.r2
+26. Ans. x=

(17) x2

:(18-x)*::25:16. Ans. x=10 or 90.

x 14 x
(18 ) 14!^

:

~1T~
: : 16 : 9 - Ans - *=8 or 56.

75(x-7) 48(x 4)
<19 ) x_4 =

x_ 7
Ans. x=19 or 5f.

(20) x2

x;y=40, xy y*=15. Ans. x=8, 2/
= 3.

(21) (x t/)x=91, (x 7/)
2=49. Ans. x=13, y= 6.

.a: v Ans. x=24, or 8,
(22) (ar y)-es24, (a: y)-= 6.y

'y
y 'x

2/
= 12, or 4 -

(23) x2
2/=48, xi/

2=36. Ans. x=4, i/=3.

(24) ixy= T/x*+y*+x+y, ^+7/*=(x+7/)*-ja:7/.
Ans. z==6, 3/

= 8.

xy
Ans - *=2 2/=2 '

(26) xa
+2/

a=a, xa y
a=b.

(27) ^ 5^+lOx3
10x+5a: 1=32. Ans. r=3.

(28) <
8 2^+1=25. Ans. <= V6-

(29) V^ Vy=3, Vz+ V3/=7. Ans. o:=625, y=16.

(30) z ^=369, z2
y
s=9. Ans. x=5, 2/=4.

-j /^

(31) x3
3/

3=56, xy= . Ans. x=4 or 2, y=2 or 4.

(32) x2
2/+2/

2=116, xi/l4-2/=14. Ans. x=5 or 2 Vf, 2/= 4 or 10 -

(33) Var+ ^2/=6, x+i/=72. Ans. x=64 or 8, y=8 or 64.

(34) xf+yf=20, xl+7/i=6. Ans. x= 8 or y'S, y=32 or 1024.

'35) x4+2x2
2/
2
+2/

4=1296 4xi/(x
2
-fxy+i/

2
),

x y=i.
Ans. z=5 or 1, y=l or 5.

181. We have seen that an equation of the form ax2=6 has two roots, or

that there are two quantities which, when substituted for x in the original

equation, will render the two members identical. In like manner, we shall

find that every equation which involves x in the third power has three roots ;

an equation which contains x4 has four roots ; and it is a general proposition

in the theory of equations that an equation has as many roots as it has di-

mensions.

182. The above method of solving the equation ax"=b will give us only

one of the n roots of the equation if n be an odd number, and two roots if n be

an even number. Such a solution must, therefore, be considered imperfect,

and we must have recourse to different processes to obtain the remaining
roots. This, however, is a subject which we must postpone for the present.

SOLUTION OF COMPLETE QUADRATICS. CONTAINING ONE UNKNOWN QUANTITY.

183. In order to solve the general equation

let us begin by dividing both members by a, the coefficient of x2
; the equa-

tion then becomes

b e
x2+-x=-,^a a
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or,

3*+px=q,
putting, for the sake of simplicity,

6 c

-=p, -=<7-
a f a

This form of the quadratic equation may be produced by multiplying to-

gether two simple equations. Suppose
a: o=0, z /3 =0;
.-. (a-o)(z-/3)=0,

which is satisfied by making z=o, or x=j3.

Multiplying the two factors (z a) and (x /?),
the equation becomes

* (o+/3)x+a3=0 ...... (1)

Substituting first a, and then /3, for x, this may be written either

which are identical.

Putting in equation (1) above, p in place of (+/3), and q in place of

o/3, it assumes the form

xs-fpz 9=0.
But

T> i iq= tM
By subtraction, .... ., o 3 i 72 ia ^\j'

<

By addition and subtraction, o^ 5

As o and f3 are the values of z, and differ only in the sign of the radical part,

both may be written together thus :

Hence the following rule for resolving a complete or adfected quadratic

equation.

Reduce the given equation to the form x3+Px q=0 by clearing offrac-

tions, transposing all the terms to the first member, and dividing throughout by
the coefficient of. the square of the unknown quantity. The equation being thus'

prepared, the value of the unknown quantity will be equal to the coefficient of
its first power with the sign changed, i^ the square root of the square of this

coefficient 4 times the known terms of the equation.

The expression x= !.pii\^P
3
+4<7 may, by passing the i under the

radical, be written i= ^p V(ip)
2
+?> which, translated into a rule, is

often the more convenient form.

EXAMPLES.

(1) z*_yx-f2=0.

By the rule,

..r=3or ,

according as we use the upper or lower sign.
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(2) 3x x2 =2 ; changing all the signs,

x2 3x= 2, or x2 3x+2=0.
By the rule,

ar=giV9 2X4=2 or 1.

Either of these values of x will satisfy the given equation. First substi-

tuting 2, we have

3x24=2;
and substituting 1, we have

3X11=2.
(3) x*+6x=l6.
By the form,

x=-iprt=V(iP)M-<?
a:= 3 v

/9+16=2 or 8.

(4) x 10x= 21

x=5 V25 21

x=7 or 3.

(5) acx2+icx adx 6<#=0.

Dividing by ac,

/& d\ Zrf

x2+( -)x= .r \a c/ ac

.v by the rule,

.. x=-, or -.
c a

(6) x2+6a:=27. A.ns. x=3, or 9.

(7) a:
2 7a:+3|=0 Ana. z=6|, or i.

IQx

(8) x2+ =19. ^-na- ^=3, or 6J.

(9) ^=5+^-
Ans.a:=10,or2.

(10) a:
2 6x+8=80. Ans. x=12, or 6.

(11) i3 10+17=1 Ans. x=8, or 2.

(12) .r
3 x 40=170. Ans. x=15, or 14.

(13) 3x2 9x 4=80 Ans. ar'=7, or 4.

(14) 7.rs 21x4-13=293. Ans. x=8, or -5.

xa 4x ^^

(15) -+ j-19=15j.
Ans. x=9, or --.

QT^ ^
(16) T+3i=-+8. Ans. x=3, or --.

(17) x+4+
7x 8

3 ~M

=13. Ans. x=4, or 2.

36 u
. i

(IQ\ 4U = 46. Ans. w=12, or f.
u

5_p 9 3p(19)16= -+3p. Ans. p=6, or.
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rj+7
(21) 14+4 D ^=3 D +-

7A 2A

(23)

6

3 <~ 2

(24)
'

-4-^-^= .
> +1^ 6

X 7
(25) X+60~3X 5'

48 165

(28) x3 8x=14.

(29) 3x3+x=7.

(30) 6x 30=3z*.

(31) (x Vl42.334)(x+ / 142.334)=27.22z.

207

Ans. n =9, or 28.

Ans. A=2, or 5-

Ans. <=2, or |f.

Ans. =2, or 3.

Ans. X=14, or 10.

Ans. r=10, or f.

Ans. r=5f, or 5.

Ans. z=9.4772+, or 1.4772+ .

Ans. x=1.3699+, or 1.7032+.

Ans. xzzr

(32) 23:(140+x)=(240+x):1041.

(33) .(x+6) : (3x+12)= (3x 12) : (x 6).

(34) 21z3
1617z+20748=0.

(35) 3.5^11.75^41.25=0.

(36) (3x+l)(4x-2)=(13z+7)(5z-3).

z 7
(37) r-r-^;-^ -==0.

Ans. x= 13.61 -/ 327.566.

Ans. x= 27.4 or 352.6,

, V54
Ans. x=r zb~'

Ans. z= 60.73, or 16.27.

Ans. g=5.5, or 2.14.

li -y/1008
Ans. x^-

53

x+60 3x 5

7i

(39)

(40)

15 p 12 3p 23p+60
4

~
4p 5

~7p 7
'

_o.-
1 8 xj x

' 3 x 2x 2^ :

3 6
(43) ^+-TT-^-=uX X^ X^-r~2JT

4x2+7x 5x x3

11

19 3+x
"~

9
'

Ans. x=14, or 10.

Ans. ?=21, or 5.

Ans._p=3, orfff.
'

Ans. x=3, or |.

Ans. 9=6, or 1

T
9
.

Ans. x=2, or y.

Ans. x=3, orff.

Ans. x=3, or fj.

Ans. x=4, or y.

Ans. x=-
" 4ac

(47) oc+6c a*=0. Ans. x=a 6, or a c.
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(48) 2(fe

T -X- -/-- -
I VJ a)(" C

)
3

Ans. 2/= .

184. If b=a in the general form (x a)(x 6)=0, it assumes the partic-

ular form (x a)
2=z2

2aa:+a
2=0.

If the two values of x be -\-a and a, the form (x a)(x-{-a)=x'* a2=0.

185. Recollecting that the value of the unknown quantity is called the root of

the equation, it is seen that every equation of the second degree has two roots,

and, by the general form (1),
2

(a-\-b)x-{-ab=0, that their sum is equal to

the coefficient of the second term with the contrary sign, and that their prod-
uct is equal to the absolute term or known quantity, when transposed to the

first member. Thus, in Example 4, above, the sum of the two roots 3 and

9 is 6, and the product 27. The same may be seen in other exam-

ples.

The general form ax*-{-bx=c is capable of producing all the particular

forms by the supposition of particular values for the coefficients. Thus, if

&=0, it assumes the form of pure equations. If c=rO, it may be written

x(ax+b)=0,

which we perceive may be verified by making x=Q, or ax-\-b=Q ,'.x= .

b
The roots are, therefore, in this case, and -. Whenever an equation is

divisible throughout by the unknown quantity, one of its roots is zero.

When we know that the two roots of the equation of the second degree are

real, the above relations make known at once the nature of these roots ; for

example, admitting that those of the equation x2 2x 7=0 are real, we
conclude immediately that they are of different signs, because their product

is equal to the absolute term 7, and, moreover, that the greater is positive,

because their sum is -\- 2, the coefficient of x taken with the contrary sign.

186. Another mode of solution may be derived as follows :

If we can, by any transformation, render the first member of the equation

&-\-px=q the perfect square of a binomial, a simple extraction of the square

root will reduce the equation in question to a simple equation.

But (ar+^p)
3
is 3?-}-px-\-%p*.

In order, therefore, that the first member may be transformed to a perfect

square, we must add to it the square of \p ; that is, the square of half the co-

efficient of the second term, or simple power of\ ; it thus becomes

P P*
which is the square of x-\-. But since we have added to the left-1

member of the equation, in order that the equality between the two member

may not be destroyed we must add the same quantity to the right-hand mei

ber also ;
the equation thus transformed will be
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Extracting the root,

Transposing,

2

the same form for the value of x as we obtained by the first method.

fp*We affix the sign i to
\]~T-\-<li

because the square both of + -J

fp* fP* \
and also of \j~T~{~ <l'

*3 "4~ (~I~"4~?)
an(^ every quadratic equation must,

therefore, have two roots.

From what has just been said, we deduce the following general

RULE FOR THE SOLUTION OF A COMPLETE QUADRATIC EQUATION.

1. Transpose all the Icnown quantities, when necessary, to one side of the

equation, arrange all the terms involving the vnknoum quantity on the other

tide, and reduce the equation to the form ax2-f-bx=c.
2. Divide each side of the equation by the coefficient ofx

9
.

3. Add to each side of the equation the square of half the coefficient of the

<imple power q/"x.

That member of the equation which involves the unknown quantity will

thus be rendered a perfect square, and, extracting the root on both sides, the

equation will be reduced to one of the first degree, which may be solved in

the usual manner.

EXAMPLE I.

12ar 210=205 3x?+5.

Transposing and reducing,

3z8+12r=420.
Dividing by the coefficient of Xs

,

Completing the square by adding to each side the square of half the coefficient

of the second term,

(ar+2)
s=144.

Extracting the root, s-j-2= -/144
= 12

.-.*= 212.
Hence

<z= 24-12=10
<x= 2 12= 14.

Either of these two numbers, when substituted for x in the original equation,
will render the two members identical.

O
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EXAMPLE II.

2**+ 34=20*+ 2.

Transposing and reducing,

2s8 20z= 32.

Dividing by 2, a* 10:r= 16.

Completing the square,
x3 10x+25=25 16,

or (z-5)*=9.

Extracting the root, z 5= V9 -

Hence
<z

Jz=5 3=2.

EXAMPLE III.

3z3 2z=65.
2 65

Dividing by 3, Xs -.?=.

Completing the square,

1\ 8 196

Hence

EXAMPLE IV.

Transposing, xs+z =2.

The coefficient of x in this case is 1 ;
.-.in order to complete the square, we

/l\ a 1

must add to each side
\^\

, or -.

.-. x=l, and .r= 2.
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EXAMPLE V.

6x 30=3z3
.

Transposing, 3zs+6x=30.
Changing the sign on both sides,

So* 6z= 30.

Dividing by 3, Is 2x= 10.

Completing the square, a? 2x-j-l=l 10,

or

(r !)= 9._
.-.z-l= V-9-

Hence

C z=l-f -v/^f
Jr=l -v/ 9'

In the above example, the values of x contain imaginary quantities, and the

roots of the equation are, therefore, said to be impossible.

EXAMPLE VI.513 2 273

Clearing of fractions,

lOr3 6z+9=96 8ar 12r+273.
Transposing and reducing,

22r9+2x=360.
Dividing both members by 22,

2 360
3* -4--X=- .

Tjg 22

/i V
Adding I oJ to ^^ members,

2 /1\ 360 /1\
22
Z
+\22/

=
22"+\22/

'

Extracting the root,

60

2-

921

=
22'

Hence
1 89

EXAMPLE VII.

OC
ox3 :-r=cr 6a*.

v a+6
ac

Transposing, ,
,.
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Dividing by a+5, *+$ ' x
(a+bf

Completing the square,
ac

4

c )
9 ca+4ac

*-2(^p)S
-

Extracting the root,

EXAMPLE VIII.

Transposing, (n m2
)x

2 2&nsx= n*(a
2+ 12

Dividing by the coefficient of x2

Completing the square,

Extracting the root,

The two values of x are

(9) rrM-4.r=21.
Ans. x=3, x=-7.

(10) a^

(11) 622r 15xa=6384. Ana. a:=22^, .T=18.

7_|_y'__1039 7 y^ 1039

(12) 8x-7i+ 34 =0, Ans. xss-^
--

,
a:=--

Jg
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1+-/133 1 -/133
(13) 3x+x=ll. Ana. x=-^-,

x=---
x 4x

(14) -4
Ans. x=7. 12. . . ., x= 5.73.......

6x 40 3x 10 23

^-1E^- <r=27=
2 - Ans " *=T' x= 4 '

90 90 27 5

3a*x 6a3+a6 2fc* &*x 2a 6 3a+26
(17) fa.+ =-^--- Ans. x=-^, z=

-^-.
^Jnun V'wire

(18) mx* 2mxvfl=* > Ans. x= 7 ; 7 , x= 7
-7.Vm+ V V m V "

(19) 4a3xs+4ascsx+4a6(f
3x

Ans. x=

^X~
* /

187. The above rule will enable us to solve, not only quadratic equations,

but all equations which can be reduced to the form

I jt 2

that is. all equations which contain only two powers of the unknown quantity,

and in which one of these powers is double of the other.

For if, in the above equation, we assume y=z, then y^s^x*
1

, and it be-

comes

Solving this according to the rule

y_~P
Putting for y its value,

XD=-

Extracting the nth root on both sides,

2

EXAMPLE I.

x 25xs= 144.

Assume x*=y, the above becomes

y
3

25y= 144.

Whence ^=16, y=9.
But since x*=i/.-.x= :t -/y ;

Thus the four values of x are +4, 4, +3, 3.
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EXAMPLE II.

x4 7z2=8.
Assume x-=y, y* 7y=8.
Whence 2/=8, y= 1

And since x*=y .-. x= i V y.

Whence the four roots of the equation are Jt -y/8, i / 1, the last two
of which are impossible roots.

EXAMPLE III.

Let 3? 2z3=48.
Assume x?=zy, the above becomes

i/
2

2y=48.
Whence y=8, or 6.

But since xs=y .. x= tyy.

Hence two of the roots of the above equation are + V8 and \/6; the

remaining four roots can not be determined by this process.

EXAMPLE IV.

Let 2x 7 Vz=99,

or 2z 7x^=99.

This equation manifestly belongs to this class, for the exponent of x in the

first term is 1, and in the second term half as great, or |.

In this case assume -\/x=y, the equation becomes

2y*7y99.

Whence y=9, y= .

But since -\/x=y .. x=y*
121

... *=81, *= .

To account for the two values of x in this equation, it must be observed that

one belongs to -f- -\/x, the other to i/x.

This will appear clearly in the following example.

EXAMPLE V.

ax=b-{- V ex .......... (1)

Solving this equation in the same manner as the preceding, we shall find

If we substitute these two values of x in the original equation, we shall find

that the first only will verify it ; the second belongs to the equation

ax=b V ex ......... . (2)

These two equations, multiplied together, produce the complete quadratic

equation

whose roots are the two values of x given above.

The explication of this matter is, that ^x is always supposed to have the

double sign i, and therefore the general form expressed by equation (1) in-

volves covertly that expressed by equation (2). It is necessary, therefore, in



QUADRATIC EQUATIONS. 215

examples of this kind, to try the answers obtained, by substituting them, in

order to see which belongs to the given form.

188. Many other equations of degrees higher than the second may be solved

by completing the square ; although, it must be remarked, we can seldom ob-

tain all the roots in this manner. The transformations to which we subject

equations of this nature, in order that the rule may become applicable, depend

upon various algebraic artifices, for which no general rule can be given. The

following examples will serve to give the student some idea of the course he

must pursue ; a little practice will soon render him dextrous in the employ
ment of such devices.

EXAMPLE VI.

Let Vx+12+ {/x-f-12=6
Assume ar-j-12=y, the equation then becomes

which evidently belongs to the same class as the previous examples ; completing
tbe square, we shall have

t

7/

T=2, or 3.

Raising both sides of the equation to the power of 4,

y=16, or 81

.-. x, or y 12= 4, or 69.

EXAMPLE VII.

Let 2x+ /2^+1= 11.

Add 1 to each member of the equation, it becomes

22?+1+
Assume 2x'3-{-l=y, then

Completing the square, and solving, we find

z
, or vr 2*i

-{-l=3, and 4

L=9, and 16

15
r2=4, and .

Hence *=-f 2, 2, +v g
,

It may be remarked, that it is in general unnecessary to substitute y, which
has been done in the above examples for the sake of perspicuity alone.

EXAMPLE VIII.

/

Let

Transposing *+ -}_*+ =42.

g
Considering z+- as one quantity, and completing the square.

1 169
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L
8 l

i

13
"' X

+~x
=~Z ~2

=6, and 7.

Hence we have the two equations
z3 6xs= 8

Solving the first in the usual manner, we find

:r=4, and 2,

and by the second, we have

7-f -v/17 7 -v/17

which are the four roots of the proposed equation. If we had reduced this

equation by performing the operations indicated, instead of employing the

above artifice, it would have become

x^+x3 26x2+8x+64=0,
a complete equation of the fourth degree.
The roots of equations of the fourth degree, reducible to the second as above,

present themselves ordinarily under the form Vai Vb, an(i frequently af

ford an application of the process exhibited at (Art. 104).

(9) x4
-J-4z

a=12. Ans. x=:t 1/2, or i T/ 6.

(10) x5 Sx3 513=0. Ans. x=3, or ^/~19.

(11) x* 13x2+36=0. Ans. x=:JL2, x=3.

(12) (x
2

2)
2=-(x2

+12). Ans. x=2, .r=-.

(13) (x
2

l)(a^ 2)+(x
s

3)(x
3

4)=x*+5. Ans. ar=l, ar=3.
/m v/m;2+ 4

JP\;
(14) z2n mxa

=p. Ans.
a:=^ -^3 j

n
.

\/4x-4-2 4 -y/-^

(15) = zz . Ans. x=4.*

_ i / / _
G-|- yZ v-^

(17) ^/x
3 2-^xx=:0. Ans. x=4

(18) V^5+ \/^=6 -j~x. Ans. z=2

(19) 22^-+-^. Ans. x=49.

<2 ) -ll-l 2^=-
An9- X=25 r 49-

(21) a^+x^=756. Ans. x=243, or (28)^".

2- i

(22) x3 x2 =56. Ans. x=4, or ( 7)
3

.

* In this and some of the following examples another value, x=, is also found, but it

will not satisfy the equation, and is, therefore, to be rejected. [See Ex. 5, p. 214.]
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9_

r 3 l_~fl 5

a 3

8

(25) 3z* *= 592.
2

n

(26) a:" '2ax*=l.

lctn^ 123-J-41-V/X 4(5y"x-\-x) Zx3
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ON THE SOLUTION OF QUADRATIC EQUATIONS CONTAINING TWO
UNKNOWN QUANTITIES.

189. An equation containing two unknown quantities is said to be of the

second degree when it involves terms in which the sum of the exponents of the

unknown quantities is equal to 2. but never exceeds 2. Thus,

3z2
4z+2/

2
zy 57/-|-6=0, 7xy 4z+i/=0,

are equations of the second degree.

It follows from this that every equation of the second degree containing

two unknown quantities is of the form

ay* -\- bxy -\- ex"
1
-\- dy -f- ex-\-f= 0,

where a, b, c, ..... represent known quantities, either numerical or alge-

braical; i. e., the equation contains the second power of each of the unknown

quantities, the first power of each, and the product of the two. Not that

every equation of the second degree contains all these, but when any one of

them is wanting the coefficient of that term, in the general form, is said to be

zero.

Let it be required to determine the values of x and y, which satisfy the

equations.

ay*+bxy+cx*+dy+ex+f=0 ....... (1)

a'y*-\-'b'xy-\-c'x'
1 -)rd'y+e'x-\-f'=Q ....... (2)

Arranging these two equations according to the powers of y, they become

ay*+(bx+d)y+(cx*+ex+f)=0 .......

Put bx-\-d=h; cx^+ex+f =k
b'x+d'=h'; c'x*+e'x+f'=k'.

.:ay*+hy+k=Q ........... (3)

a'f+h'y+k'=0 ........... (4)

Multiply (3) and (4) by a' and a respectively, and also by It! and k ; then

aa'y*+a'hy+a'k=Q .......... (5)

aa'y*-\-ah
f

y-\-ak'= Q .......... (6)

ak'y*+hk'y+kk'=Q .......... (7)

a'ky*+h'ky+kk'=Q .......... (8)

Subtracting (6) from (5), and also (7) from (8), we have

(a'hah')y+a'kak'=Q ...... (9)

(a'kak')y+h'khk'=() ..... (10)

Multiplying (9) by h'khk', and (10) by a'kak', we have

(a'hah')(h'khk')y+(a'kak')(h'khk')=0 . . (11)

(a'k akjy+(a'k ak')(h'k fefc')=0 . . (12)

.-. (a'hah')(h'khk')=(a'kak'Y ..... (13)

Substituting the values of h, h', k, k
f in equation (13), we have

Hence, by multiplying and expanding, the final equation in x is of the fourth

degree, which will, in general, be the degree of the equation obtained by

eliminating between the two equations of the second degree ; but the general

form includes a variety of equations, according to the values of the coefficients

a, 6, c, &c. ; when d, e,f, d', e',f are each =0, the solution may be obtain-

ed by quadratics, the resulting equation in x being

\(a'bab')x+a'dad'l . {(b'cbc')x(c'4cd')\=(a'cac'yx*.
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Although the principles already established will not enable us to solve equa-

tions of this description generally, yet there are many particular cases in

which they may be reduced either to pure or adfected quadratics, and the

roots determined in the ordinary manner.

EXAMPLE I.

Required the values of x and y, which satisfy the equations,

fy=i (!)

xy=f (2)

Squaring (1), 3*+2xy+y*=p* (3)

Multiply (2) by 4, lxy=q* (4)

Subtract (4) from (3), x 2xy+t/
J=p3

4g
3
,

2y=p=p T/p*4<p
Hence the corresponding values of x and y will be

*=
and

jp-j- Vp*
y=-5

'. adding and subtracting 2x=:a rb -/2ft
3 a*

2y=a^ -/26
s a3

.

Hence the corresponding values of x and y will be

a+ V2&3 a'^i
x=-- -

I

V263 a f

a
x==

and
a V263 a a+ -/26

s a3

y=--2 -J y=--2

EXAMPLE III.

z y=i Vp* 4g
3 ......... (5)

x+y=p.

EXAMPLE II.

y=<z (1)>
6 (2)S

Square (1), x34-2x2/4-y
s=a8

.

But by (2), z3 +y-=b*.

Subtracting, 2xy =.a? 6s
(3)

Subtract (3) from (2), x3 2xy+y2=2i3 a9,
or (z yY=2b

3 a3
.

Extracting the root, x y=i i/2b* a3.

But by (1), x-\-y=a,

n ............... (2)

Cube (1), xS+Sx^+Sx^+y^m3
.

But by (2), x_+y3=n3
.

Subtracting, Sx'ty-f 3x2/
3=m3 n3

,

or 3xy(x+y)=wi
3 n3

.
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Substitute for (x-\-y) its value derived from (1),

O^fU tTl zr^77t "Ti

m3 n3

^ 3m

4(m
3 n3

3m

4(m
3 n3

}
'

3m
'

4(m3

Squaring (1),

But by (3)

Subtracting,

But by (1),

Hence the two corresponding values of x and y are

m /4n3 m3
I

*~~ O \ / 1 O

m /

*=
~2+V
m /

^=2~V

'in3 m3

12m

'4ft
3 m3

12m

and

EXAMPLE IV.

3 33 3

Square (1),

But by (2), rS+zV+y

Subtracting

o o
/
v x3

-]-^:
2
^/

2
-!-^/

3 =6
33 333 33 333
^2_i_i/3_i_9r2 . ar

T
y
T+ 2^3/^+23/2 . x*y

f =a'*.

=5.23
a;
2

. xfy^+2x
2
y

3
-{-2y

2
x^y

f

4
"i/

T
(a:^+a;

T
2/*'+2/2)

3 3

(3)

But by (1),

And by (3),

Adding,

2a (3)

2a
3

f J ^_ fl3 6
^ ^ ~ a ~^

2o~'
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Again, from (1),

And from (3),

Subtracting,

3 33 3

x3+x*y*+y 2 =a.
3 3 *ll.

3(a*_ b)
x 2

2x*y*+y
2=a--1 --,

"

2a

Bntby(4), = a* b

.. adding and subtracting, x 1 /3a*_ 6 fe& a
SS^I^W^

Hence the corresponding values of x and y are

I / O ^3 Ll / O /. t ^
f -4- y oOr 0-J- v ,50 a* 1 3 t

X
] ^ C

X=l-
. and

f c dr -/3a
3 aa

) Tfe+ V36 aa
)

Via >

The following require the completion of the square :

EXAMPLE T.

(
x-\-y-lr x*-{-y

i=a. (1)

Add (1) and (2), 2z3+2x=a+6 (3)

Subtract (2) from (1), 2y
s
-f2y=a b (4)

Equations (3) and (4) are common adfected quadratics; solving these in the

usual manner, we find

1=1
2

-Irt
1/= O

EXAMPLE VI.

( x -f;. = 6 (1)

^z4
-J-y

4=272 (2)

Raise (1) to the 4th power.

But from (2), z* -fj/= 272.

Subtracting 4x3j/+6x
s
y
2
-f4xy =1024,

or 2xy(2i
s+3ry+2ya

)=1024 (3)

But by (1), 2xy(2z
2+4zy+2y:

)
= 144j2/ (4)

Subtracting (3) from (4),
2x3y

s=144x^1024.
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Transposing and dividing by 2,

yZy* 72ry = 512.

Completing the square, .ry_72:n/4-1296=1296 512,

or (zy-36)*= 784._
.-. xy 36 = V784

zy =36 28

=64, and 8.

4xy =32.
3

2xy-\-y'
2= 4

:xy =2,

First, let us suppose xy=8.

By (i),

And

Subtracting,

But

.. adding and subtracting,

Secondly, let us take the other value of xy, or 64.

By (1),
zs
4-2:n/+2/

s= 36,
A OKfi4xu = 2oo.

Subtracting,

But
.. adding and subtracting,

2= 220,

.-.z y =-v
/ 220,

x+y =6.

6+ V 220 6 V 220

and
6 V 220 64- V 220

2 ; 2

Hence, in the above equations, two of the roots of x and y are possible, and

two impossible.

(7)* 2z +3y =118 (!) ?

5X2
7y

2=4333 (2) S

A
*=35 Urf

Z=-229^i

(8)

343/4- 6X2 52/
2=13ari/+24 (2)

1811 55=F-/lli4'
x=' _--- I ar=

Ans.
133

34

Ts =-

26

(9) (x-y)(z-y)=a

9_3j/1114
26

(1)

Ans. z=
2V26 a

* The following examples, though a valuable exercise, are likely to detain the st

long, and may, if necessary, be omitted.
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(22) xy-\-xy"=12, Ans. a;=2, or 16,

t

(23) x x^=3 y, .Ans. x=4, or -,

4 x =yy*.

1 974-1/6045
(24) (x*+l)y=x y +126, Ans. =5, or ~> or *Z-

,

3/=6, or 150, or

5 58

1682

97 :
f-V/6045*

(25) * +y -fiA-fF=12'
Ans> *=5' or 4>

y=4, or 5.

(26) ^-{-j^-f-ar y=132, Ans. =11, or 1, or 61i/ 3716,

y=l, or 11, or ei^f -\/ 3716.

(27) a%z=2y*, Ans. ar=l4J
3
, or 8,

(28) x$-\-y%=3x (see note, page 217), Ans. #=4, or 1,

(29) a:-|-i^=^ (-4. Ans. *=-4, or 1,

y=l, or 2.

(30) 2a;+^=26 7-i/2a;-|-y-}-4, Ans. #=2, or 10,

16.-.
y=J,or25.

-4
(32) 16x yb=6y$xl, Ans. x^4, or 16,

=-^=. 2^=256, or 256J
3
.

(33) V 5\/x-{-5'\/y-{-\/y=lQ ~\/x, Ans. ar=9, or 4.

3/=4, or 9.

PROBLEMS PRODUCING- PURE EQUATIONS.

(1) What two numbers are those whose sum is to the greater as 10 to 7,

and whose sum, multiplied by the less, produces 270 ?

Ans. 21 and 9

(2) There are two numbers in the proportion of 4 to 5, and the difference

of whose squares is 81. What are the numbers?

Ans. 12 and 15.

(3) A detachment from an army was marching in regular colurrui, with 5

men more in depth than in front ; but upon the enemy coming in sight, the

front was increased by 845 men, and by this movement the detachment was

drawn up in five lines. Required the number of men ?

Ans. 4550.

(4) Two workmen, A and B, were engaged to work for a certain number

of days at different rates. At the end of the time, A, who had baen idle 4 of
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those days, had 75 shillings to receive ; but B, who had been idle 7 of thost-

days, received only 46 shillings. Now, had B been idle only 4 days and A ?.

they would have received exactly alike. For how many days were they en-

gaged, how many did each work, and what had each per day 1

Ans. A worked 15 and B 12 days.

A received 5 and B 4 shillings per day.

(5) A vintner draws a certain quantity of wine out of a full vessel that holds

256 gallons, and then filling the vessel with water, draws off the same quantity

of liquid as before, and so on for four draughts, when there were only 81

gallons of pure wine left. How much wine did he draw each time 1

Ans. 64, 48, 36, and 27 gallons.

PROBLEMS WHICH PRODUCE ADFECTED OR COMPLETE QUADRATIC
EQUATIONS.

PROBLEM 1.

190. To find a number such that twice its square, augmented by three

times the number, is equal to 65.

Let x be the number required, we have for the equation of the problem,

Solving the equation,

Hence

The first of these two values satisfies the conditions of .the problem, as stated

in the enunciation ; for, in fact,

2(5)+3x 5=2x25+15
=65.

In order to interpret the meaning of the second value, let us observe, that

if we substitute x for -f-j in the equation 2j3
-f-3.r=65, the coefficient of 3x

alone will change its sign, for ( z)*=(-}-x)-=x
2
. Hence the value of x will

no longer be

3
,
23

*=-4 T ,

3 23
but will become x= 4- -i .

4 4

13
Hence

where the values of x differ from those already found in sign alone.

13
Hence we may conclude that the negative solution

, considered with-

out reference to its sign, is the solution of the following problem :

To find a number such that twice its square, diminished by three times the

number, is equal to 65.

In fact, we have

ri3\- H_i^ 39

"=65.
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PROBLEM 2.

A tailor bought a certain number of yards of cloth for 12 pounds. If he had

paid the same sum for 3 yards less of the same cloth, then the cloth would

have cost 4 shillings a yard more. Required the number of yards purchased.
Let x be the number of yards purchased.

240
Then -- is the price of one yard, expressed in shillings.

If he had paid the same sum for 3 yards less, in that case the price of each

240
would be represented by

--.
3T o

But by the conditions of the problem, this last price is greater than the

former by 4 shillings; hence the equation of the problem will be

240 240

3 27--
.-. =15; x= 12.

The value ofx=15 satisfies the conditions of the problem, for

240 240
-=16; -=20,

the price of each yard in the first case being 16 shillings, and in the last case

20, which exceeds the former by 4 shillings.

With regard to the second solution, we can form a new enunciation to which

it will correspond. Resuming the original equation, and changing x into x,

it becomes

240 240= +4,t* Ix 3 x

240 240

rJ-3~ IT" 4 '

an equation which may be considered as the algebraic representation of the

following problem :

A tailor bought a certain number of yards of cloth for 12 pounds. If he had

paid the same sum for 3 yards more, then the cloth would have cost 4 shillings

a yard less. Required the number of yards purchased.

The above equation when reduced becomes

instead of a-
2 3x=180, as in the former case; solving the above, we find

z=12; x= 15.

The two preceding problems illustrate the principle explained with regard

to problems of the first degree.

PROBLEM 3.

A merchant purchased two bills ; one for $8776, payable in 9 months, the

other for $7488, payable in 8 months. For the first he paid $1200 more

than for the second. Required the rate of interest allowed.
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Let .r represent the interest of $100 for 1 month.

Then 12r, 9r, 8x severally represent the interest of 8100 for 1 year, 9

months, 8 months.

And 100+9r, 100-f-8r represent what a capital of 100 will become at

the end of 9 and of 8 months respectively.

Hence, in order to determine the actual value of the two bills, we have the

following proportions :

8776X100
100+9x:100::8776:

7488X100
100+te:100::7488i

The fourth terms of the above proportions express the sum paid by the

merchant for each of the bills.

Hence, by the conditions of the problem,

877600 748800____ -^1200
100-f9r 100+8ar~

or. dividing each member by 400,

2194 1872

100+9x~100+Sx~
Clearing of fractions and reducing,

216x*+4396z=2200.
Whence

2198 fe-200 /2198\ 8

:== ~"
216 V 216 ~*~\216/

2198dL V 5306404

216

2198 / 5306404
12r==- -__

2198i 2303.5

18

.-. l-2j=5.86 ; and l~2x= 250.08

The positive solution, 12ar=5.86 , represents the required rate of in-

terest per cent, per annum.

With regard to the negative solution, it can only be considered as connected

with the other by the same equation of the second degree. If we resume

original equation, and substitute x for -j-r, we shall find great difficulty

conciling this new equation with an enunciation analogous to that of the

posed problem.

PROBLEM 4.

' A man purchased a horse, which he afterward sold to disadvantage for 24

pounds. His loss per cent, by this bargain, upon the original price of the

. is expressed by the number of pounds which he paid for the horse.

'Required the original price.

Let i be the number of pounds which he paid for the horse.

Then x '24 will represent his loss ;

'lit. by the conditions of the problem, his loss per cent, is represented by the

'lumber of units in x ;
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X
His loss per cent, on one pound is .

z2

.. his loss per cent, on x pounds must be -rrr?, or x times as great.

This gives the equation,
z2

ioo
=a:-24

Henee z=60 ; x=40.

Both these solutions equally fulfill the conditions of the problem.

Let us suppose, in the first place, that he paid 60 pounds for the horse ; since

he sold it for 24, his loss was 36. On the other hand, by the enunciation, his

60 60 X 60
'oss was 60 per cent, on the original price; z. e., r^r

of 60, or =36 ;

thus 60 satisfies the conditions.

In the second place, let us suppose that he paid 40 pounds ; his loss in this

case was 16. On the other hand, his loss ought to be 40 per cent, on the

40 40X40
original price ; i. e.,

r-r^r
of 40, or =16 ; thus 40 also satisfies the con

ditions.

GENERAL DISCUSSION OF THE EQUATION OF THE SECOND DEGREE.

191. The general form of the equation, the coefficients being considered in

pendently of their signs, is

p*
I., II. Let q be positive and < ,

P IP^
I. Ifp be positive, x= o^Va ?' an<^ both vames a*"6 negative.* I

I II. Ifp be negative, ar= --- ^-J~r- q, and both values are positive.

p*
III., IV. Let q be positive and > ,

III. Ifp be positive, z= --v/-r ,

2 V 4 'I and both values are imagi-

P I~P* nary.f
IV. Ifp be negative, ,r=+ -y/-r- ? I

In this and all the following values of x, calling the term ^ before the radical the ra-

tional pait, and ^j^y the radical part, we perceive that, when q is positive, the radical

i

part is greater than the rational, since ,. / alone equals -, the rational part ;
and the sign i

V 4

of the whole expression is that of the radical part ;
but when q is negative, the rn

pait is less than the rational, and the sign of the whole expression is that of the rational
j

part.

t In this case, if we examine the general equation, we shall find that the condition

absurd ; for, transposing q, and completing the square, we have
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Lf^

V., VI. Let q be negative and < ,

be positive, jr= -it-v/-r

VI. Ifp be negative, z=-f- -v/ +5>

VII., VIII. Let q be negative and
>-j-

Ifp be positive, x= -J -7-+ ?,

VIII. Ifp be negative,T=+- :

+?,

and one value is positive

the other negative.

IX., X. Let <?=-T~I and be positive

IX. Ifp be positive, z= .

and the two values are equal.
T/

X. Ifp be negative, z=-{~ .

XL, XII. Let 5=0,
P P

XI. If ^ be positive, x= ^i^? one value = p, the other =0.

P P
XII. If j? be negative, z=+-i^, one value =-\-p, the other =0.

XIII. Let q be negative.

{XIII. p=0, z=db /<?! the two values are equal with opposite signs.

XIV. Let q be positive,

{XIV. ^?=0, z=rt V 9> both values are imaginary.

[XV. Let 5=0,

{XV. p=0, then z=0, or both values are equal to 0.

jbnt since q is. by hypothesis, a negative quantity, we may represent it by m, where

i is some positive quantity ; then

(.f)'+-=o i

Ithat is. the sum of two quantities, each of which is essentially positive, is equal to 0, a

taanifest absurdity. Solving the equation,

tl : symbol -j/ m, which denotes absurdity, serves to distinguish this case. Hence,
en (he roots are imaginary, the problem to which the equation corresponds is absurd.

still say, however, that the equation has two roots
; for, subjecting these values of

,ie same calculations as if they were real, that is, substituting them for x in the pro-

sed equations, we shall find that they render the two members identical.
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XVI. One case, attended with remarkable circumstances, still remains to be

examined. Let us take the equation

ax^+bx c=0.

Whence
2a

Let us suppose that, in accordance with a particular hypothesis made on the

given quantities in the equation, we have a=0 ; the expression for x then

becomes
f

\

X=
Q

. ; whence <

26
' T

\*'
The second of the above values is under the form of infinity, and may be con-

sidered as an answer, if the problem proposed be such as to admit of infinite

solutions.

We must endeavor to interpret the meaning of the first, -.

In the first place, if we return to the equation ax^-^-bx c=0, we perceive
/

that the hypothesis a=0 reduces it to bx=c, whence we derive X=T, &finite

and determinate expi-ession, which must be considered as representing the true

value of - in the case before us.

That no doubt may remain on this subject, let us assume the equation

ax^-^-bx c=0,

and put z=-, the expression will then become

a b

y y
Whence cy'

t bya=Q.
Let a=0, this last equation will become

from which we have the two values i/=0, y=- ; substituting these values in

z=-, we deduce
y

* To show more distinctly how the indeterminate form arises, let us resume the general

value of one of the roots.

If a were a factor of both the numerator and denominator, it might be suppressed, ana I

then a, being put equal to zero, would give the true value of x. We can not, indeed, ;

show the existence of this factor in the two terms of the fraction as it stands ; but if we

multiply both numerator and denominator by b -\/i^-{-4ac, it becomes

4ac)( b i/fr*+4ac)
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With respect to the value xs=~, it is only to be observed that the

divisor zero, having to be regarded as the limit of decreasing magnitudes, either

positive or negative, it follows that the infinite value ought to have the am-

biguous sign Jt-

Thus the values of x, to recapitulate, become

:r=T, ar=ioo.
b

It is remarkable that, for this particular case, we have three values of J,

while in the general case there are but two.

To comprehend how these values truly belong to the equation ax^+bx

c=0, put it under the form

bx+c
When a=0, the question is to find values which will render ; zero.

We see that *'=? will do it ; and as the same expression can be written under

6 c
the form -+-;, we perceive that it becomes zero also, from the values

x ' a?

XVII. Let us consider the still more particular case still, where we have,

at the same tune, <z=0, 6=0. Then the two general values of x become -.

We have seen above that the first may be changed into

2c
x= -

Transforming the second in a similar manner, it becomes

2a(b+
In which, making a=0, 6=0, the values of x, thus transformed, both give

x=x ; and here, also, the infinity ought to be taken with the sign i.
If we suppose a=0, 6=0, c=0, the proposed equation will become alto-

gether indeterminate.

The numerator, being the product of the sum and difference of two quantities, is equal
to the difference of their squares, to wit : b* (b*-\-4ac)= 4ac. We see, therefore, that

Sa is a common factor to the numerator and denominator of the last expression. Suppress-

ing it, we have

2c

in which, if we make a=0, it gives *=.

* In the analytic theory of curves these values answer to the intersections of the axis

of abscissas with the curve of the 33 order, the equation of which is yx-\-bx-\-c=Q. If this

curve be constructed, it will be found to cut the axis of abscissas first at a finite distance

from the origin, and besides has this axis for an asymptote both on the side of the positive
and negative abscissas, which amounts to saying that it cuts it at infinity in either di-

rection.
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192. Let us now proceed to illustrate the principles established in this gen-
eral discussion, by applying them to different problems.

PROBLEM 5.

To find in a line, A B, which joins two lights of different intensities, a point

which is illuminated equally by each.

P 3
A P, B P 2 .

(It is a principle in Optics that the intensities of the same light at different

distances are inversely as the squares of the distances.)

Let a be the distance A B between the two lights.

Let b be the intensity of the light A at the distance of one foot from A.

Let c be the intensity of the light B at the distance of one foot from B.

Let P
,
be the point required.

LetAP t =:r; .-. BP 1==a x.

By the optical principle above enunciated, since the intensity of A at the

distance of 1 foot is b, its intensity at the distance of 2, 3, 4, ... . . . feet must be

-, -, ; hence the intensity of A at the distance of x feet must be . In the

c

same manner, the intensity of B at the distance a x must be -;
---

; but
(a xy

according to the conditions of the question, these two intensities are equal;

hence we have for the equation of the problem

Solving this equation, and reducing the result to its most simple form,

a-y/6

We shall now proceed to discuss these two values :

1O T I n T< /; * *

{U.

.1 / ; i /

V o4- V c
I V

a-/c
a x=-V& \/c

I. Let &>c.
a ^/b v u

The first value of x, . , . , is positive, and less than a, for ..

is a proper fraction ; hence this value gives for the point equally illuminated

point PD situated between the points A and B. We perceive, moreover, that

the point Pj is nearer to B than to A ; for, since 6^>c, we have

A/6 1

c, and .-.

and, consequently, , 7 . 7->rv This is manifestly the result at which we
Vo+Vc 2

ought to arrive, for we here suppose the intensity of A to be greater than that

ofB.

The corresponding value of a x, ., j-,
is positive, and less than -.

V o+ V c

The second value of x, TT T-, is positive, and greater than a, for
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Vb> yl- yc, .-.

This second value gives a point P 2 , situated in the production of A B, and to

the right of the two lights. In fact, we suppose that the two lights give forth

rays in all directions ; there may, therefore, be a point in the production of A B

equally illuminated by each, but this point must be situated in the production

of A B to the right, in order that it may be nearer to the less powerful of the

two lights.

It is easy to perceive why the two values thus obtained are connected by
the same equation. If, instead of assuming A P

t
for the unknown quantity x,

b c
we take A P 2 , then B P,=x a, thus we have the equation -5=7

-rs ;
but

x* (x a)
since (x a)

3
is identical with (a x)-, the new equation is the same as that

already established, and which, consequently, ought to give A Po as well as

AP t .

The second value of a x, -yy
-

7-, is negative, as it ought to be, being

estimated in a contrary direction from the first, on the general principle already

established, that quantities estimated in a contrary sense should be represented
,- _u_ ff \f

with contrary signs ; but changing the signs of the equation a x= -77
-

7-,

a \/cwe find x a= TT-7-, and this value of x a represents the absolute
y o y c

length ofB P 2 .

II. Let 6<c.

The first value of x, ., . is positive, and less than -, for -\/b-\- y"c

a -\J c a.

The corresponding value ofax, ., . , is positive, and greater than -.
y "~i v c 2

Hence the point P l is situated between the points A and B, and is nearer

to A than to B. This is manifestly the true result, for the present hypothesis

supposes that the intensity of B is greater than the intensity of A.

ai/b a-\/b
The second value of x, 77

-
7-, or -.
-

77, is essentially negative. In
V o yc yc yb

order to interpret the signification of this result, let us resume the original

equation, and substitute x for 4-x, it thus becomes =-. :
- But since

x* (a-j-x)-

(a x) expresses in the first instance the distance of B from the point required,

a-\-x ought still to express the same distance, and, therefore, the point re-

quired must be situated to the left of A, in P 3 , for example. In fact, since

the intensity of the light B is, under the present hypothesis, greater than the

intensity of A, the point required must be nearer to A than to B.

aye ay'c
The corresponding value of a x, TT

-
7-, or .
-

77, is positive, andyo yc yc yo r
.

the reason of this is, that x being negative, a x expresses, in reality, an

arithmetical sum.
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III. Let 6=c.
a

The first two values of a: and of a x are reduced to , which gives the
tit

bisection of A B for the point equally illuminated by each light, a result which

is manifestly true, upon the supposition that the intensity of the two lights is

the same.

a -\/b
The other two values are reduced to , that is, they become infinite,

that is to say, the second point equally illuminated is situated at a distance

from the points A and B greater than any which can be assigned. This re-

sult perfectly corresponds with the present hypothesis; for if we suppose

the difference b c, without vanishing altogether, to be exceedingly small, the

second point equally illuminated, exists, but at a great distance from the two

lights , this is indicated by the expression j-r
^-, the denominator of which

is exceedingly small in comparison with the numerator if we suppose b very

nearly equal to c. In the extreme case, when b=c, or -\/b -J c-=0, the

point required no longer exists, or is situated at an infinite distance.

IV. Let i=c and a=0.

The first system of values of x and a x in this case become 0, and the

second system -. This last result is here the symbol of indetermination ;
for

if we recur to the equation of the problem

b c

or

(b c)z
2 2abx= a2

6,

it becomes, under the present hypothesis,

O.o:2 O.a.-=0,

an equation which can be satisfied by the substitution of any number whatever

for x. In fact, since the two lights are supposed to be equal in intensity, and

to be placed at the same point, they must illuminate every point in the line

A B equally,

The solution 0, given by the first system, is one of those solutions, infinite

in number, of which the problem in this case is susceptible.

V. Let a=0, b not being =c.

Each of the two systems in this case is reduced to 0, which proves that in

this case there is only one point equally illuminated, viz., the point in which

the two lights are placed.

The above discussion affords an example of the precision with which algebra

answers to all the circumstances included in the enunciation of a problem.

We shall conclude this subject by solving one or two problems which re

quire the introduction of more than one unknown quantity.

PROBLEM G.

To find two numbers such that, when multiplied by the numbers a and b

respectively, the sum of the products may be equal to 2s, and the product of

the two numbers equal to p.
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Let i and y be the two numbers sougnt, the equations of the problem will

be

ax-{-by=2s (1)

xy= p (2)

From (1)

2s ax

Substituting this value in (2) and reducing, we have

03? 2sx+bp=Q.
Whence

s i

ar=--\/*3 cs
p6,a a

And .-.

The problem is, we perceive, susceptible of two direct solutions, for s is

manifestly > -\/s- a?bp; but in order that these solutions may be real we
must have s-^>, or =a*bp.
Let a=&=l ;

in this case the values of z and y are reduced to

Here we perceive that the two values of y are equal to those of x taken m
an inverse order; that is to say, if s-\- \/s

2 p represent the value of x, then

* /** P will represent the corresponding value of y, and reciprocally.

We explain this circumstance by observing that, in this particular case, the

equations of the problem are reduced to x-\-y=2s, xy=p, and the question

then becomes, Required two numbers whose sum is 25, and whose product is

p, or, in other words, To divide a number 2s into two parts, such that their

product may be equal to p.

PROBLEM 7.

To find four numbers in proportion, the sum of the extremes being 2s, the

sum of the means 2s', and the sum of the squares of the four terms 4c;
.

Let a, x, y, z represent the four terms of the proportion; by the conditions

of the question, and the fundamental property of proportions, we shall have as

the equations of the problem

a+z=2s ................ (1)

x+y=2s' ................ (2)

xy=az ................ (3)

d+*+y+ 2"=4c ................ (4)

Squaring (1) and (2) and adding the results,

But by (4), q^+^+y-fz3 =4c*._ _
Subtracting, 2az-{-2xy=i(s'

2 -
T-s'

3
c-).

by (3), 4a:=4(s
2
+5'-_c3

)=4iy . . (5)

Squaring (1), as+2ai+z3=4*s
.

But by (5),
4ar 4(^4.3'-- cg

).

Subtracting, a3
2az-\-z-=-i(c- s'-).

Extracting the root, a :== i ~ V c~ s'
2

-

But by (1), a+z=2s.
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.-. adding and subtracting, a=s^ Vc* s
'2

Z=S=f Vc
2

S'
2

Precisely in the same manner we shall find

.T=S' -s/C
2 S2

2/=s'=p Vc2
-s

2

The four numbers will therefore be

z=s -/c
2

s'
2
, y=s' -y/c

2
s2'

These four numbers constitute a proportion, for we have

az=(s + Vc2
s'*)(s -y/c

2
s'

2
)=s 2

cs+s"-'

z2/=(s'4- -v/c
2 s3 )(s' Vc2 s 2

)=s'
2 c2+s2

.

(8) What two numbers are those whose sum is 20, and their product 36 ?

Ans. 2 and 18.

(9) To divide the number 60 into two such parts that their product may
be to the sum of their squares in the ratio of 2 to 5.

Ans. 20 and 40.

(10) The difference of two numbers is 3, and the difference of their cubes

is 117. What are those numbers ?

Ans. 2 and 5.

(11) A company at a tavern had <8 15s. to pay for their reckoning; but,

before the bill was settled, two of them left the room, and then those who re-

mained had 10s. apiece more to pay than before. How many were there in

company ?

Ans. 7.

(12) A grazier bought as many sheep as cost him ^660, and after reserving

15 out of the number, he sold the remainder for 6654, and gained 2s. a head by

them. How many sheep did he buy ?

Ans. 75.

(13) There are two numbers whose difference is 15, and half their product

is equal to the cube of the lesser number. What are those numbers ?

Ans. 3 and 18.

(14) A person bought cloth for c33 15s., which he sold again at c2 8s. per

piece, and gained by the bargain as much as one piece cost him. Required the

number of pieces.
Ans. 15.

(15) What number is that, which when divided by the product of its two

digits, the quotient is 3 ; and if 18 more be added to it, the digits will be

transposed ?

Ans. 24.

(16) What two numbers are those whose sum, multiplied by the greater,

is equal to 77, and whose difference, multiplied by the lesser, is equal to 12?

Ans. 4 and 7.

(17) To find a number such that, if you subtract it from 10, and multiply the

remainder by the number itself, the product shall be 21.

Ans. 7, or 3.
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(18) To divide 100 into two such parts that the sum of their square roots

may be 14.

Ans. 64 and 36.

(19) It is required to divide the number 24 into two such parts that their

product may be equal to 35 times their difference.

Ans. 10 and 14.

(20) The sum of two numbers is 8, and the sum of their cubes is 152.

"What are the numbers ?

Ans. 3 and 5.

(21) The sum of two numbers is 7, and the sum of their 4th powers is

641 . What are the numbers ?

Ans. 2 and 5.

(22) The sum of two numbers is 6, and the sum of their 5th powers is

1056. What are the numbers ?

Ans. 2 and 4.

(23) Two partners, A and B, gained 66140 by trade; A's money was 3

months in trade, and his gain was d60 less than his stock; and B's money,
which was d50 more than A's, was in trade 5 months. What was A's stock ?

Ans. <100.

(24) To find two numbers such that the difference of their squares may
be equal to a given number, q

2
; and when the two numbers are multiplied by

the numbers a and b respectively, the difference of the products may be equal
to a given number, 5s.

1
(a

2

Ans.
a2 b2

a* *

(25) There are two square buildings that are paved with stones a foot

square each. The side of one building exceeds that of the other by 12 feet,

and both their pavements taken together contain 2120 stones. What are the

lengths of them separately ?

Ans. 26 and 38 feet.

(26) A and B set out from two towns, which were at the distance of 247

miles, and traveled the direct road till they met. A went 9 miles a day, and

the number of days at the end of which they met was greater by 3 than the

number of miles which B went in a day. How many miles did each go ?

Ans. A went 117 and B 130 miles.

(27) The joint stock of two partners was 82080 ; A's money was in trade 9

months, and B's 6 months ; when they shared stock and gain, A received

81140 and B $1260. What was each man's stock ?

Ans. 8960 and Si 120.

(28) A square court-yard has a rectangular gravel walk round it. The side

of the court wants 2 yards of being 6 times the breadth of the gravel walk,

and the number of square yards hi the walk exceeds the number of yards in

the periphery of the court by 164. Required the area of the court.

Ans. 256.

(29) During the time that the shadow on a sun-dial, which shows true

time, moves from 1 o'clock to 5, a clock, which is too fast a certain number of
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hours and minutes, strikes a number of strokes equal to that number of hours

and minutes ; and it is observed that the number of minutes is less by 41 than

the square of the number which the clock strikes at the last time of striking.

The clock does not strike twelve during the time. How much is it too fast?

Ans. 3 hours and 23 minutes.

(30) A and B engage to reap a field for c4 10s.
;
and as A alone could reap

it in 9 days, they promised to complete it in 5 days. They found, however,

that they were obliged to call in C, an inferior workman, to assist them for the

last two days, in consequence of which B received 3s. 9d. less than he other-

wise would have done. In what time could B or C alone reap the field ?

Ans. B could reap it in 15 days, C in 18.

(31) The fore wheel of a carriage makes 6 revolutions more than the hind

wheel in going 120 yards; but if the periphery of each wheel be increased 1

yard, it will make only 4 revolutions more than the hind wheel in the same

space. Required the circumference of each. Ans. 4 and 5.

(32) The intensity of two lights, A and B, is as 7 : 17, and their distance

apart 132 feet. Whereabouts between is the point of equal illumination ?

Ans. 51.595 feet from A.

(33) The loudness of a church bell is three times that of another. Now,

supposing the strength of sound to be inversely as the square of the distance,

at what place between the two will the bells be equally well heard ?

Ans. .3662 of distance between the bells from the second.

(34) Supposing the mass of the earth to be 1 and that of the moon 0.017,

their distance 240 thousand miles, and the force of attraction equal to the mass

divided by the square of the distance ; at what point between will a body be

held in suspense, attracted toward neither ?

Ans. 27682.8 miles from tne moon.

(35) The hold of a vessel partly full of water (which is uniformly increased

by a leak) is furnished with two pumps, worked by A and B, of whom A takes

three strokes to two of B's ; but four of B's throw out as much water as five

of A's. Now B works for the time in which A alone would have emptied the

hold ; A then pumps out the remainder, and the hold is cleared in 13 hours

and 20 minutes. Had they worked together, the hold would have been emp-

tied in 3 hours and 45 minutes, and A would have pumped out 100 gallons

more than he did. Required the quantity of water in the hold at first, and

the hourly influx of the leak.

Ans. 1200 gallons in the hold, 120 gallons of leakage per hour.

(36) To divide two numbers, a and 6, each into two parts, such that the prod-

uct of one part of a by one part of b may be equal to a given number, p, and the

product of the remaining parts of a and b equal to another given number, p'.

_ab (p' p)^i\ab (p' p)\
2

4abpAns . x_ __

[ 75
'

i

- 77 \ > 2 __ A/JnTt
I

I*V
1

P

y
W J^ IJ (

''" \J J. / )
^ t*

l/j/
'

26

2/=f_^^-^ ^

f 5h(j-j)=F^ ^~
(P
~P)
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(3?) To find a number such that its square may be to the product of the

differences of that number, and two other given numbers, a and 6, in the

given ratio, p : q.

Ans.

(38) There is a number consisting of two digits, which, when divided by
the sum of its digits, gives a quotient greater by 2 than the first digit ; but if

the digits be inverted, and the resulting number be divided by a number greater

by unity than the sum of the digits, the quotient shall be greater by 2 than the

former quotient. What is the number ?

Ans. 24.

(39) A regiment of foot receives orders to send 216 men on garrison duty,
each company sending the same number of men ; but before the detachment

marched, three of the companies were sent on another service, and it was then

found that each company that remained would have to send 12 men additional

in order to make up the complement, 216. How many companies were in the

regiment, and what number of men did each of the remaining companies send

on garrison duty ?

Ans. There were 9 companies, and each of the remaining 6 sent 36 men.

DECOMPOSITION OF THE TRINOMIAL Z?-\-pX q INTO TWO FACTORS OF THE
FIRST DEGREE.

193. If we add to this trinomial, in order to complete the square of the first

two terms, the term ip
3
, and afterward subtract the same, so as not to change

the quantity, it becomes

which may be written thus :

(*+iP)
3
-(J^+<7) .............. (2)

But the difference of the squares of two quantities being equal to the prod-
uct of their sum and difference, the expression (2) is equal to the following :

(3)

We perceive from this expression that the two factors of the first degree,
which compose the trinomial of the second degree, are x minus each of the

roots of the equation of the second degree, formed by putting this trinomial

equal to zero.

Moreover, by equating (3) to zero, we perceive that the only way of satis-

fying the resulting equation is by making one or other of the factors of the

first degree, of which it is composed, equal to zero.

The first,

=0, gves x= p
and the second,

=o, gives z= P+ Vip*+q-
Hence there are but two values of x which will satisfy the general equation

EXAMPLES.

1*. Decompose the trinomial x3 Tr-f-lO into two factors of the first de-

gree.
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From the equation a;
2 7x+10=0 we find the roots z=5 and z=2.

Hence

a? 7z+10=(:r 5)(x 2).

2. 3x- bx 2.

Equating this trinomial to zero, after dividing by 3, we obtain the equation
x1

|x f=0, the roots of which being =2 and x=z l
, we have

3. a,-
2+5x+3. Ans.

4. 4x2
4a.-+l. Ans. (2.r I)

2.*

5 D
. z2

5z+7. Ans. (z 1)
2+.

194. To complete the analysis of the 2 degree, it would be necessaiy to

consider the case where the unknown quantities exceed the equations in num-
ber. The more simple is that when there is but one equation and two un-

known quantities. If it be resolved with respect to one of the unknown quan-

tities, y, for example, an expression is found generally containing x under a

radical ; so that, by giving to x any rational values whatever, irrational values

would be found for y. It might be proposed to find rational values for x, for

which the corresponding one of y should be rational also. But the difficulty

of this problem, unless it be restricted to some very simple cases, is beyond
mere elements. We add one or two here. For further information upon
the subject, the student is referred to the Theory of Numbers, by Legendre,
a separate and very elegant treatise, in one quarto volume.

INDETERMINATE ANALYSIS OF THE SECOND DEGREE.

Resolution in whole numbers of an equation of the second degree, with two

unknown quantities, which contains but the first power ofone of the unknowns.

195. The questions of indeterminate analysis, which depend upon equations

of a degree superior to the first, go beyond the limits which we have imposed
on ourselves in the present work ; but when an equation of the second degree

contains the second power of but one of the unknown quantities, the solutions

of this equation in whole numbers may be regarded as a question of indeter-

minate analysis of the first degree.

Equations of the second degree in two unknown quantities, which do not

contain the second power of one of these, are represented by the equation

mxy-\-nx* -\-px-\-qy=r ............ (1)

Resolving this equation with respect to y, we find

nxz
px-\-r

J~
mx-\-q

'
* '

We deduce from it, by performing the division,

n nq mp m^r-^-mpq nq*
i/= x -I-
-

-4-
-

;
-

: ; ,* m ' ms
m?(mx-\-q)

which gives
N

m*y=mnx+nq

putting to abridge mar+mpg n<2
2=N.

N
In order that x and y should be whole numbers, it is necessary that-

mx-\-q

should be a whole number ; we must, therefore, calculate all the divisors of

* This presents a case of what ore called equal roots.
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the number N, and put mx-\-q equal to each of these divisors successively,
taken with the sign -\- and with the sign . If the equations thus obtained

furnish for x a certain number of entire values, these values are to be substi-

tuted in equation (3); and it is necessary/ moreover, in order that y may be a

whole number, that the second member which becomes a known quantity
should be divisible by m?.

It is evident that the number of entire solutions will be very limited, and

that there may not be even one.

If this method be applied to each of the following equations,

2xy 32*4- y=l
5xy=2x +3i/4-18

xy+ :r =2.r+3i/4-29,
considering only the positive solutions, we find

For the first equation ...... <

I x=3, y=4.

Sz=l,

#= 10

=3, y=2
x=7, y=l-

( x=4, 11 91
For the third equation ..... \

\x=5,y=7.
If the remainder, after the division of nx2 px-\-r by mx-^-q, should be

zero, equation (1) would be of the form (mx-\-q)(ax--by-^-c)=Q ; and we
should have all the solutions of this equation by resolving separately the two

equations mz4- <?=0, ax-\-by-\-c=Q.
The method which has just been explained is applicable only in case m is

not zero.

Let m=0 ; equation (1) gives

nx3
4-px r

y=-q ............... <
4

)

Suppose that one value of x=a (a being a whole number) gives an entire

value for y. If we place x=a-\-qt, t being any entire number whatever, wo
find

by hypothesis, n<&-\-pa r is divisible by q; the value of y, corresponding to

x=a-\-qt, will be then a whole number. As this conclusion is true, what-

ever be the sign of t, it follows that, if the equation admits of entire solutions,

they will be found to be such as answer to a value of x between and q.

Consequently, to obtain all the solutions in whole numbers, it will be suffi-

cient to substitute for x in the equation the numbers 0, 1, 2, 3, ... q_ 1,

and each solution in whole numbers corresponding to one of these numbers
will furnish an infinite number of others.

Equation (4), in which the object is to find values of x which render the

polynomial ruP-\-px r a multiple of the given number q, M. Gauss calls con-

gruence of the second degree ; so, also, the equation ax-{-by=c, hi which we
seek to render ax c a multiple of b, is a congruence of the first degree.
Further matter on the subject of indeterminate analysis will be given in con-

nection with the theory of numbers, for which see a subsequent part of thr

work.

Q
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MAXIMA AND MINIMA.

196. When a quantity which is capable of changing its value attains such a

value that, after having been increasing, it begins to decrease, or, having been

decreasing, it begins to increase, in the first case it is called a maximum, and in

the second a minimum. The same quantity may have several maximum or

minimum values.

EXAMPLE.

To find what value of x will render the fraction --- a maximum or

minimum.

Equating the given function of x to z, we have

2x2
We perceive at 'once that by making z=+ l we have x=2, and that the

values of z, a little less than 1, render x imaginary ;
hence the given expression

has a minimum value 1 corresponding to =2.

In a similar manner, making z= 1, we have x=0 ;
and a negative value

of z, a little smaller than 1, would render x imaginary. But in algebra, nega-

tive quantities, which, without regard to the sign, go on increasing, ought to be

regarded, when the sign is prefixed, as decreasing ; we may, therefore, say

that a value of z, a little greater than 1, renders x imaginary, then z= 1 is

a maximum corresponding to x=Q.
As the subject of maxima and minima is generally treated by the aid of the

differential calculus, we shall not dwell further upon it here, though it furnishes

one of the applications of equations of the second degree.

THE MODULUS OF IMAGINARY QUANTITIES.

197. We have seen (191) in the equation of the second degree

that when q is positive, and greater than , the roots are imaginary. Replace

P*
^p by a, to avoid fractions ; and to express that q~> y, put q=a?-\-b* ; the

equation will become
a:
2

2a.r-f a
2
+frz 0;

and, by the formula for the solution of equations of the second degree,

l ........ (1)

The absolute vaiue of the square root of the positive quantity a"-\-b- is call-

ed the modulus of the imaginary expression (1). For example, the modulus

of 3 4 V 1 would be -y/9+16, or 5.

Two quantities, such as a+ b V 1 and a I \/ 1, which differ from one

another only in the sign of the imaginary part, are called conjugates of each

other. Two conjugate quantities have then the same modulus.

If we make 6=0, the expression a-\-b->/ 1 reduces to a. Thus, the

formula x=.a-\-b -/ 1 m y represent all quantities real or imaginary, a rep-

resenting the algebraic sum of the real quantities, and b that of the coefficients
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of -v/ 1 in the imaginary terms. .When the quantity is real, it has for cou-

jugate an equal quantity, and the modulus is nothing else than the quantity

itself, abstraction being made of the sign.

Now I shall proceed to establish two propositions relating to moduli, which

may be often useful.

PROPOSITION I. The sum and difference of any two quantities tchaterer

have a modulus comprehended between the sum and the difference of their

moduli.

Let there be two expressions a-f * V 1, a'+b' J 1. Calling r and r"

their moduli, we have r*=al
+f', i

j*=a'3
+b'*. Naming R the modulus of

then* sum. we have evidentlv

+ 2(aa'+ bb')
-
~2(aa'

But multiplying r* by r'*, we have

then the numerical value of aa'-{-bb' is less than, or at most equal to, rr
1
. Con-

sequently, it is clear that R* is comprehended between the two quantities

r--\-r'--{-2rr' and r5 -|- r
'5

Srr', or, what is the same thing, between (r-f-r')
1

and (r r')-.
Then the modulus R is comprehended between the sum and

the difference of the moduli r and r1
.

The demonstration is precisely the same where, instead of the sum of the

imaginary expressions, we consider their difference.

PROPOSITION II. The product oftwo quantities Jiasfor modulus theproduct

of the moduli of these quantities.

In fact, multiplication gives

and if we take the modulus of this product, we find, conformably to the enun-

ciation,

-V/(aa' bb')*+(ab'+ba'y= Jc

Corollary. Then the product of any number of factors whatever must

jave for modulus the product q of the moduli of all the factors. Then the

n^ power of an imaginary expression has for modulus the n01
power of the

modulus of that expression.

The above nomenclature and propositions are from Cauchy, who exhibits in

;arkable manner the efficiency of imaginary expressions as instruments in

the investigation of the properties of real quantities. The following is a

specimen :

If two numbers, of which each is the sum of two squares, be multiplied to-

gether, the product must also be the sum of two squares.

Let the two numbers be

a*+b* and <z"-f 6".

The first of these may be considered as the product of the factors

and the second as the product of the factors,

a'-j-6' \/ 1 and a' b' -\/ 1 ;
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so that tlie product of the proposed numb.ers will be the product of the foin

factors

a+b V 1> a b V 1, a'+6' V 1> a' 6' A/ 1-

Actually multiplying the first and third, and then the second and fourth, we
have the following pair of conjugate expressions, viz.,

(aa
r

&?>')+ (a6'+6a') Vlt (ad 66') (aV+ba') -/^l*
of which the product is

(aa
1

bb'y+(ab'+ba')*,
which is, therefore, the product of the original numbers, and proves that that

product must, like each of the proposed factors, be the sum of two squares.

If we interchange the numbers a and b, or the numbers a', b', the terms of

the product just deduced will be different; thus, putting a' for ft', and b' for

a', which produces no essential change in the proposed numbers, we have

(a
2
-f 68

)(a
/s+ 6'2

)
= (aa' bb')*+ (ab

1+ oa')
2= (at' 6a')+ (aa'+ 66')

2
.

Consequently there are two ways of expressing by the sum of two squares
the products of two numbers, each of which is itself the sum of two squares ;

thus,

(2
2 -l 2

)(3
2+22

)
= 42+ 72=1 2+ 82

&c., &c.

METHOD PROPOSED BY MOURET FOR AVOIDING IMAGINARY QUANTITIES.*

198. Objections have been made to results obtained by the calculus of imag-

inary expressions. The rules observed in the calculus, it is said, have only

been demonstrated for real magnitudes ; it is by mere analogy that they are ex-

tended to the case of imaginary quantities ; we may, therefore, raise reasonable

doubts as to the exactitude of the results thus deduced.

M. Mourey, who has been much occupied with these difficulties, has sought

to free analysis from them entirely, in a work published in 1828, entitled the

True Theory of Negative Quantities and of the so-called Imaginary Quanti-

ties. Without entering into long details, we shall endeavor here to give an

idea of the methods proposed by this author.

Let us resume the expression a -)-&/ 1, and give it, at first, the form

If we take the sum of the squares of the fractions, which are between the

brackets, we find that this sum is equal to 1 ; and from thence we conclude that

these two fractions can be regarded as being the sine and cosine of a same

angle a. Designate also the modulus -\fa*-\-b- by A; the imaginary expres-

sion can be put under the form A(cos a-j- / 1 sin a). Considering that

this expression contains really but two quantities, the modulus A and the

angle a, M. Mourey proposes to regard the modulus A as expressing the

Jength of a right line O A, and a as being
j

the angle A O X, which this line m;i

with a fixed axis OX. In other words,

the modulus A represents a line of a cer-

tain length, which at first lay upon the

axis O X, and which, by making a move-

* To understand this, a knowledge of the first principles of Trigonometry is necessary
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inent round the origin O upward, has departed from this axis by an angle a.

M. Mourey gives the name verser to this angle, or, rather, to the arc which

measures it; and then, instead of the imaginary expression, he writes simply

Aa, a notation very suitable to recall at fhe same time the modulus A and the

verser a. He proposes even to give the namerou&r, oricay, to the length O A,

placed in its true position with regard to O X, so that A verser a, or Ao,is the

route from O toward A.

As a line can make around the origin O as many revolutions as we please,

and that, also, as well by commencing its rotation below as well as above O X,

it follows that the verser may pass through all states of magnitude, and be as

well negative as positive. It will be positive when the movement of the line

shall have commenced above ; it will be negative when the movement com-

menced below. From this it follows that the same route can be represented
with a verser which is positive, or one which is negative, provided that the

sum of the versers, abstraction being made of the signs, is 360.

From the preceding conventions it results that a way can be represented by

giving to the length A an infinity of different versers. Suppose, to fix the

ideas, that O A should be a determinate way, and that then the verser A OX
should be an acute angle a

; it is evident that the position of O A will undergo
no change if we add or subtract from a any number whatever of entire cir-

cumferences. Thus is established this important remark, that if we desig-

nate by 2a- an entire circumference, or 360, and by n any whole number

whatever, positive or negative, the expression A2~n-|-a will represent the

same route as Aa ; this is expressed by the equality

A2--l-a:=Aa.

When we give to A a verser equal to zero, the length A lies upon the line

X. When the verser is equal to v or 180, this length is found in the op-

posite direction, OX' ; then it is nothing else than the negative quantity A.

Thus we ought to regard as altogether equivalent the two expressions A
and A.-.

After these preliminaries, M. Mourey establishes the rules of algebraic

calculus ; then he passes to equations, and reconstructs algebra thus entirely.

1 shall not follow this author in all his details ; I shall confine myself to the

developments necessary to explain here what sense the new algebra attaches

to the old imaginary expression -/ A2
. I shall seek, first, the rule to be

followed in the multiplication of any two quantities whatever, Ao and B ?.

Here the two factors are the magnitudes A and B, measured upon two fines

O A and O B. which make, with a fixed axis

OX, angles A O X, B O X, represented by the

'A' versers a and . It is necessary, then, first

of all, to give to the definition of multiplica-

tion the extension suitable to render it appli-

cable to the case in question. But, consider-

ing that the multiplier Bf? indicates a line B,

which departs from the fixed line O X by an

angle equal to /?, M. Mourey regards multi-

plication as having for its object to take at

first the length A in its actual direction as many times as there are units in B,

and to turn the new line O A' around the point O, to depart from this direc-
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tion by an angle equal to /?, and to give it the position O C. From this it fol-

lows that, in designating by A B the product of the two magnitudes, obstruc-

tion being made of all idea of position, the product sought will be (AB)a+
Thus we have

that is to say, we multiply the moduli according to the ordinary rules of arith-

metic, and take the sum of the versers.

If the two versers are equal to TT or 180, we shall have A?rxB:r=(AB)2-.
But AT and BTT are nothing" else than A and B, and (AB)2^ is the same

thing as -j-AB ; then AX B=+AB. This is the known rule, by

gives -f-
.

.According to this rule, tho square of Ac will be (A
3
)2a ; that is to say, we

take the square of the modulus and double the verser. Then, reciprocally, the

square root is obtained by extracting the square root of the modulus without re-

garding the verser ; then take half the verser.

Let us come now to the interpretation of the imaginary expression / A 2
.

For this purpose, let us observe, first, that it is equivalent to \/(A.
2
)2n--\-ir;

then extracting the square root,

If n. is even, the verser mr-\-~ places the length A in the same position as

p i;r ; that is to say, in the position OP, perpendicular to OX.
If n is uneven, the verser WT-J-ITT will place the length A in

a position O P', perpendicular to O X, but below. Thus, in

X' O X the system of M. Mourey, the expression -/ A3 offers no

longer to the mind any idea of impossibility. It represents

P' two routes, O P and O P', equal and opposite, both perpen-
dicular to the fixed axis O X.

PERMUTATIONS AND COMBINATIONS.

199. THE Permutations of any number of quantities are the changes which

these quantities may undergo with respect to their order.

Thus, if we take the quantities a, b, c ; then abc, acb, bac, bca, cab, cba

are the permutations of these three quantities taken all together ; ab, ac, ba,

be, ca, cb are the permutations of these quantities taken two and two ; a, b, c

are the permutations of these quantities taken singly, or one and one, 3cc.

The problem which we propose to resolve is,

200. To find the number of the permutations of n quantities, taken p and p

together.

Let a, b, c, d, k, be the n quantities.

The number of the permutations of these n quantities taken singly, or one

and one, is manifestly n.

The number of the permutations of these n quantities, taken two and two

together, will be n(n 1). For, since there are n quantities,

a, b, c, d, k.

Tf we remove a there will remain (n 1) quantities,

b, c, d, k.
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Writing a before each of these (n 1) quantities, we shall have

ab, ac, ad, ....... ak ;

that is, (n 1) permutations of the n quantities taken two and two, in which a

stands first. Reasoning in the same manner for 6, we shall have (n 1) per-

mutations of the n quantities taken two and two, in which b stands first, and

so on for each of the n quantities in succession ; hence the whole number of

permutations will be

n(n 1).

The number of the permutations of n quantities, taken three and three to-

gether, is n(n l)(n 2). For since there are n quantities, if we remove a

there will remain, (n 1) quantities ; but, by the last case, writing (?i 1) for

n, the number of the permutations of (n 1) quantities, taken two and two, is

(n l)(n 2); writing a before each of these (n l)(n 2) permutations,
we shall have (n l)(n 2) permutations of the n quantities, taken three and

three, in which a stands first. Reasoning in the same manner for b, we shall

have (n l)(n 2) permutations of the n quantities, taken three and three, in

which b stands first, and so on for each of the n quantities in succession ; hence

the whole number of permutations will be

fi(n-l)(n-2).

In like manner, we can prove that the number of permutations of n quan-

tities, taken four and four, win be

n(n l)(n 2)(n 3).

Upon examining the above results, we readily perceive that a certain rela-

tion exists between the numerical part of the expressions and the class of per-

mutations to which they correspond.

Thus the number of permutations of n quantities, taken two and two, is

n(n 1), which may be written. under the form n(ra 2-4-1)-

Taken three and three, it is

n(n !)( 2), which may be written under the form n(n l)(n 34-1)-

Taken/our andfour, it is

n(n !)( 2)(n 3), which may be written under the form n(n l)(n 2)

(n-4+ 1).

Hence, from analogy, we may conclude that the number of permutations

of n things, taken p and p together, will be

In order to demonstrate this, we shall employ the same species of proof

already exemplified in (Arts. 23 and 78), and show that, if the above law be

assumed to hold good for any one class of permutations, it must necessarily

hold good for the class next superior.

Let us suppose, then, that the expression for the number of the permuta-
tions of n quantities, taken (p 1) and (p 1), together, is

(n_l)(n-2)(n-3) . . . {n-(p-l)+ l} . . . (A)

It is required to prove that the expression for the number of the permuta-
tions of quantities, taken p and p together, will be

n(n-l)(n_2)(n-3) ........... (-?+!)
Remove a, one of the n quantities a, b, c, d ............ k. then, by the ex-

pression (A), writing (n 1) for n, the number of the permutations of the

(TI 1) quantities b, c, d ............ k, taken (p 1) and (p 1), will be
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Writing a before each of these (n l)(n 2)(n 3) ............ (n p-\-l)

permutations, we shall have (n l)(n 2)(ra 3) ............ (n jp+ 1) per-

mutations of the n quantities, iu which a stands first. Reasoning in the same

manner for i, we shall have (n !)(, 2)(n 3) ............ (n p+1) Per~

mutations of the n quantities, in which b stands first ; and so on for each of the

n quantities in succession ; hence the whole number of permutations will be

n(n \)(n 2)( 3) ..... (np+l) ..... (1)

Hence it appears that, if the above law of formation hold good for any one

class of permutations, it must hold good for the class next superior ; but it has

been proved to hold good when j?=2, or for the permutations of n quantities

taken two and two ; hence it must hold good when p =3, or for the permuta-
tion of n quantities taken three and three ; .. it must hold good when p=4,
and so on. The law is, therefore, general.

EXAMPLE.

Required the number of the permutations of the eight letters a, b, c, d, e,

./> > ^' taken 5 and 5 together.

Here n= 8, p=o, n p-\-\=& ; hence the above formula

the number required.

201. In formula (1) letp=n, it will then become

n(nl)(n 2) .................. 2.1,

or

1.2.3 . . . . ..... (n l)n ......... (2)

which expresses the number of the permutations of n quantities taken all

together.*

EXAMPLE.

Required the number of the permutations of the eight letters a, 6, c, d, c,

Here n=8 ; hence the above formula (2) in this case becomes

1.2.3.4.5.6.7.8=40320,
the number required.

202. The number of the permutations of n quantities, supposing them all

different from each other, we have found to be

1.2.3 ............... . ..... (n l)n.

But if the same quantity be repeated a certain number of times, then it is

manifest that a certain number of the above permutations will become identical.

Thus, if one of the quantities be repeated a times, the number of identical

permutations will be represented by 1.2.3 ............a; and hence, in order to

*
Many writers on algebra confine the term permutations to this class where the quan-

tities are taken all tog-ether, and give the title of arrangements or variations to the croups
of the quantities when taken two and two, three and three, four andfour, &.c. Tho in-

troduction of these additional designations appears unnecessary ; but, in usiug the word

permutations absolutely, we must always be understood to mean those represented by for

mnla (2), unless the contrary be specified.
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obtain the number of permutations different from each other, we must divide

(2) by 1.2.3 ............a, and it will then become

1.2.3...............(it l)n

1.2.3 ...............a

If one of the quantities be repeated a times, and another of the quantities

be repeated 3 times, then we must divide by 1.0 ............aXl-2 ............

and, in general, if among the n quantities there be a of one kind, 3 of another

kind, y of another kind, and so on, the expression for the number of the per-

mutations different from each other of these n quantities will be

1.2 ......a XI- 2 ..........3X1.2......
;

&c.
'

EXAMPLE I.

Required the numbers ofthe permutations of the letters in the wordoZge&ro.

Here =7, and the letter a is repeated twice; hence formula (3) becomes

1.2.3.4.5.6.7---=2o20, the number required.

EXAMPLE II.

Required the number of the permutations of the letters in the word

caifacarataddarada.
Here n=18, a is repeated eight times, c twice, d thrice, r twice ; hence the

number sought will be

1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18

1.2. 3. 4. 5. 6. 7. 8X1- 2X1- 2. 3X1- '
=6616299600.

EXAMPLE III.

Required the number of the permutations of the product a1 b* c1, written at

full length.

Here n=z-j-y-j-:, the letter a is repeated x times, the letter b, y times,

and the letter c, z times ; the expression sought will, therefore, be

1.2.3 ..... ; .........
1.2.3.....jrXl-2.3 ......yXl-2.3...... :

203. The Combinations* of any number of quantities signify the different

collections which may be formed of these quantities, without regard to the

order in which they are arranged in each collection. Each combination must,

therefore, have one letter different from aoy other of the combinations.

Thus the quantities a, b, c, when taken all together, will form only one

combination, abc ; but will form six different permutations, abc, acb, bac, lea,

cab, cba ; taken two and two, they will form the three combinations ab, ac, be,

and the six permutations ab, ba, ac, ca, be, c5.

The problem which we propose to resolve is,

To find the. number of the combinations of n quantities, taken p and p to-

gether.

Each of these combinations ofp quantities being separately permutated, will

furnish 1.2.3...^> permutations, which, multiplied by the whole number of

combinations, will give the whole number of permutations of n quantities, taken

* Where numerical or literal factors are combined, the term combination may be con-

sidered as signifying the same as product.



250 ALGEBRA.

p and p. Therefore the latter, namely, the whole, number of permutations,
or n(n l)(n 2)....(n p-j-1), divided by the number of permutations of
each combination, or 1 . 2 . 3 . . . p, will give the number of combinations of u

quantities, taken p and p. Denoting it by C, we have

n(n-l)(n-2) ............ (-?+ !)

1-2.3 ............... (p-l)p
' ' '

).

204. There is a species of notation employed to denote permutations and

combinations, which is sometimes used with advantage from its conciseness.

The number of the permutations of n quantities, taken p and p,
are represented by ........................

The number of the permutations of n quantities, taken all together,

are represented by ........................ (nP)
The number of the combinations of n quantities, taken p and p,

are represented by ........................ (nCp)
and so on. It is manifest that the above proposition may be expressed accord-

ing to this notation by

M. Cauchy employs the notation (m) n to express the number of combina-

tions of m letters, taken n at a time. The German notation for the same is

C.

When the series of natural numbers, or the letters of the alphabet up to

any required number, are to be permuted or combined, an abbreviated nota-

tion has been employed as follows :

P(l, 2, 3) stands for 123, 132, 213, 231, 312, 321.

P(1..4) stands for 12, 13, 14, 21, 23, 24, 31, 32, 34, 41, 42, 43.

i

C(...e) stands for abc, abd, abe, acd, ace, adc, bed, bee, bde, cde.

If one or more of the numbers or letters may be repeated, this can also be

expressed in the notation. Thus,

P(l, 1, 2)= 112, 121, 211.

P(l, 1, 2, 3)= 11, 12, 13, 21, 23, 31, 32.

C(l, 1, 2, 2, 3)= 112, 113, 122, 123, 223.

If all the letters, numbers, or single things may be repeated an equal num-

ber of times, this can be expressed with the aid of an exponent; thus,

C(l, 2, 3)', P(0, 1, 2)
2
, C(1..7)

n
.

205. If ft single things be arranged in combinations of k, or of n k=r, the

number of combinations in either case will be the same, i. e.,

C
n(n !)(* ft+1) __c _n(nl)...(nr-\-l)

n~ 1.2.3...* ~n~ 1.2.3. ..r

for every new combination of* letters must leave a new one of r letters.

By a similar reasoning, if n be divided into three parts, the first *, the secc

r, and the third s, it may be shown that

CxC =CxC =CxC , &c.
n n k n n k n n r

206. Cases may occur in which not all possible combinations, but only such
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as fulfill certain conditions, are required. Many such may be imagined. For

instance, where the numbers to be combined increase by a common difference.

or by a common ratio, as 1357, 2468, or 124, or 248. The most useful ca^e

is where the number in each combination must amount to the same sum. The
method of proceeding in this case is to fifl up all the places except the last with

the lowest numbers, the last place being occupied by the supplementary num-

ber necessary to produce the given sum ; then diminishing the last number

and increasing one of the preceding by the same amount, taking care not to

allow a lower ever to follow a higher number. We give examples of such
k

combinations, the general formula for which is rC(l . . . . n).

(1) '<>C(1...7)=127, 136, 145, 235.

(2) "C(1...8)=1238, 1247, 1256, 1346, 2345.

(3) *C(0.. 5)7i =0005, 0014, 0023, 0113, 0122, 1112.

(4) *>C(3....) =33338, 33347, 33356, 33446, 33455, 34445, 44444.

It is easy to be perceived that in two cases this kind of combination is im-

possible. 1. When the highest form does not amount to the required sum ;

and, 2. When the lowest form exceeds it, as in

i<C(123)n, or H>C(4...)n.

207. Similar conditions may be imposed upon permutations. In order that

the permutations of a given series of numbers, taken a certain number at a

time, should amount always to a given sum, the same rule wifl apply, with this

difference, that lower numbers may follow higher ; in other words, the com-

binations formed by the previous rule may each be permuted.
The following examples will render this more intelligible :

(1) 9P(1..8)=18, 27, 36, 45, 54, 63, 72, 81.

(2) 7P(1...)= 124, 142, 214, 241, 412, 421.

(3) 6p(l...)n=1113, 1122, 1131, 1212, 1221, 1311, 2110, 01 21. 2011, 3111-

(4) <P(0..)n=013, 022, 031, 103, 112, 121, 130, 202, 211, 220, 301, 310.

Under this head, also, two contradictory cases occur : 1. When the high-

est form amounts to too little ; and, 2. When the lowest form amounts to too

much. As, for instance, in

sP(1..4)n, orsP(5...)n.

208. The applications of the theory of permutations and combinations are

numerous. One of the most useful is the determination of the coefficients of

a series of the form

especially the coefficients of the binomial formula, the method of determining

which, by tha theory of permutations and combinations, will be given here

after.

Another extensive application of the theory of permutations and combica-

* These coefficients are supposed to depend upon some given law. A common case is

when the number of factors combined in each coefficient is indicated by the exponent of

the letter of arrangement, x.
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tions is to be found in geometric relations, such as where the combinations of a

certain number of points, lines, angles, &c., from among a given number of

these, are required.

Not less useful is this theory in natural science : as in crystulogvaphy, when
the manifold forms of crystals are required; in chemistry, when the various

combinations of chemical elements ;
and in music, of consonant tones, &c.

But perhaps its most important use is in the doctrine of chances, or, as it is

mathematically named, the

CALCULUS OF PROBABILITIES.

The outlines of this extensive subject we shall here briefly indicate, referring

the student for further information to the admirable treatises of La Place

and Lacroix, and to the practical work of De Morgan.
I. Let there be among ra possible cases g, which, as fulfilling certain requi-

sitions, are considered as favorable, (m g)=u unfavorable. Then the ratio

of the favorable to all possible cases is called the mathematical probability for

the occurrence of a favorable case. The ratio of the unfavorable to all possi-

ble cases is the mathematical improbability of the occurrence. If the first be

expressed by w, the second by v, then

ff Uw~ and v ................... .... (I.)m m
The probability is, therefore, the less, the smaller the number of the fa-

vorable in comparison with that of all possible cases, and vice versa. Should

all possible cases be favorable, then ?=!, which is, therefore, the expression

for certainty. Thus the mathematical probability and improbability of a pic-

tured card, of which there are 12, being drawn from 52, are expressed by
12 3 _40_^^=
52
=

13vV=52
==

13
;

that of drawing one card from 52,

52
M=5=l'52

II. Let there be among m possible cases g favorable, of different (first, sec-

ond, third, &c.) kinds, expressed by g^ g2 , g 3 , &c., the partial probabilities

by Wi, 70 2 ,
w 3 , &c. ; then

&C.- ..... (II.)

that is, the probability of one of several different kinds is equal to the sum of

their partial probabilities. Thus, for the probability of one of the six faces of

a die, marked 1, 2, or 3, being thrown, we have111
,,=-, ; a=g,,3=-;11131
' W=6+6+ 6

=
6
=

2-

III. Let the occurrence be favorable only on the supposition that two or

more of the single favorable cases concur, then the formula for the compound

probability is

in which m^ m 2 , m 3 , &c., express the possible cases of the partial occurren
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ces ; that is, the probability of the compound occurrence is equal to the prod-

ucts of the partial probabilities. For as each of the
, may concur with each

of the m, cases, there wiD be m, X> 2 possible cases, which, by the super-

vening of m 3 new cases, increase to m,X"i 2 X>H3 and so on. The same

reasoning applies to the favorable cases g lt gs , g3 , &c., from whence, by the

principles already established, results formula (III.). Let it be required, for

example, to draw out of a vase which contains the numbers 1, 2, 3, 4, 5, and 6,

first 1, then either 2 or 3, and, finally, 4, 5, or 6, in three drawings ; the prob-

ability is expressed by
1 2 3 1

If the partial occurrences are equal (that is, repetitions of the same), then

w=( )
. Thus, if with each of three dice, 6 shall be thrown,

i

216'

IV. Should there be m possible cases, of which g are favorable and u un-

favorable, and of these k-\-r are to occur, so that k of the favorable, with r of the

unfavorable, must come in juxtaposition, then the expression for the probabili-

ty of the occurrence of every such order is

(
u

}( "~M (
*~r+1

\rn-k) \m-k^i)"'\m-k-rm-l ~
m-k+l

This depends on (III.), each of the factors in the above value of w ex-

pressing the partial probability of the single occurrence of a 1st, 2d, . ...&th

favorable case, also of a 1st, 2d, . ...rth unfavorable case, and the product

expressing the probability of these occurring hi a certain order.

EXAMPLE.

If from 20 tickets, 8 of which are prizes and 12 blanks, 6 are to be drawn ,

then, in favor of the requisition that exactly two prizes shall be first drawn, or

shall occupy any given place in the order,

/8\/7\ /12\/ll\/10\/9\ 77
w=W \W x

(IB) (17) lie) lioV =3230"

V. Should there be required in the supposition of the last case no particu-
lar order for the single cases which occur, the expression becomes

r+1 \

k r1/'
_

),k+lJ'\m kJ"'\m k r+1
Thus it will be found that, if from 30 appointed numbers out of 90, 5 of the

whole 90 are to be drawn, so that just 3 of the 30 shall be among those drawn,

it being hnmaterial at which three of the five drawings, the expression for the

probability in this case is

/5.4.3\ /30\ /29\ /28\ /60\ /59\ 20650
W~

\1 . 2 . 3/
'

\90/ \89/ \88/
'

\37/ \86/ 126291'

VI. Should the number of possible cases continue to remain the same,
while the other circumstances are as in (V.), the formula would be

oAk / tt\r

4s)
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EXAMPLE.

The probability of throwing the same face three times in 7 casts of a die,

or one cast of 7 dice, would be expressed by

7.6.5/l\ 3 /5\ 4 21875

T773\6/ *W =
279936'

VII. Let the probability be required that of two different occurrences the

first, or, if this does not, the second, shall happen ; if the single probability of

the first happening be expressed by w, the probability of its failing will be ex-

pressed by 1 w ; this must be combined with the probability of the second

happening, according to (III.), giving

(1 Wi)w2

for the probability of the second happening, if the first fails : then the com-

pound probability required is expressed (II.) by
W=iW l -\-W2 (\.

W 1)=W l -{-W 2 W r .Wa .

EXAMPLE.

Required the probability of throwing with two dice, at the first cast 8, and,

if this does not happen, 9 at the second cast.

_JL* ( JL^_JL A ^_1^W~ ~ = '~'
VIII. Above we have considered the absolute probability of the happening

of an event ; the relative probability of the happening of two events is ex-

pressed by the formula

w
l

w 2
i ? or

;W
l -\-W 2 W l -\-W 2

EXAMPLE.

The relative probability of throwing with two dice rather 7 than 10, is ex-

j u
WL 62

pressed by-_=_
IX. When money depends on the happening of an event, the product of

the sum risked, multiplied by the expression for the probability of the event

on which it depends, is called the mathematical expectation. If there be

among m^mj cases, m\ favorable for one party, and^wis for the other, the

sum risked by the first GJ, and by the second a2 , then for the mathematical

expectation of each we have

Therefore, when ei= e 2 , it is necessary that i : a2=Wi : Wj. This principle

is important in the subject of annuities and life insurance. For its application,

and that of all the foregoing theory to which, see De Morgan on Probabilities.

EXAMPLES.

(1) How many binary combinations of oxygen, hydrogen, nitrogen, carbon,

sulphur, and phosphorus? How many ternary combinations of the. same?

(2) How many combinations of 5 colors among those of the prism, viz., red,

orange, yellow, green, blue, indigo, and violet ?

* 12 and 2 can each be thrown with two dice but in one way, 11 and 3 each in two

ways, 10 and 4 in three ways, 5 and 9 in four ways, 6 and 8 in five ways, 7 in six ways.
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(3) What is the probability of throwing with three dice two equal num-

bers ? with five dice, three equal ?

(4) What of throwing with two dice the faces 2, 4, and 6 ?

(5) What the probability that a dollar tossed twice will fall head up once ?

(6) Of which is the probability greater, the drawing at three trials from

52 cards three cards of different colors, of which there are four, or three face

cards, of which there are 12 ?

(7) What of drawing out of a vase containing 5 white, 6 red, and 7 black

balls, in two drawings, 2 red, or else a white and a black ball ?

(8) What of drawing out of the same vase, in three drawings, 3 of differ-

ent colors, or else 2 black and 1 white ?

(9) What of throwing with four dice 15, or with three dice 12 ?

METHOD OF UNDETERMINED COEFFICIENTS.

209. The method of undetermined coefficients is a method for the expan-
sion or development of algebraic functions into infinite series, arranged accord-

ing to the ascending powers of one of the quantities considered as a variable.*

The principle employed in this method may be stated in the following

THEOREM.

If Ax"+Bx0+Cxy-f, &c., =A'x'+ B'x0'+C'xy'+, &c. (1), for all values

of x, then must the exponents of x in the two members be the same, and the co-

efficients of the same powers of x the same. For, dividing (1) by x<*, we have

A+Bx0-<-|-Cx>' +, &c., =A'xo'--a+B
/

rf'-a+C'.r>'-*+, &c. (2)

Since x may have any value, make it zero ; the first member thus reduces

to A, while the second becomes zero, unless we suppose a equaj to some one

of the exponents a', /3', /, ---- Suppose it to be a'. Then we have a=o',
and .-. A=A'. Suppressing the equal terms A and A'x' a from the two

members of (2), and dividing it by xP , it becomes

B+ Cx>-*-f, &c., =B'x0'-0-|-Cx>"-0-}-, &c.

Making, again, x=0, the first member reduces to B, and the second to zero,

which is absurd, unless we make 3 equal to some one of the exponents of x,

say 3', in the second member, and then B=B'. Proceeding in this way, the

exponents of x, and the coefficients of the same powers of x in the one mem-
ber, may be proved equal to those in the other.

The above theorem may be expressed in a modified form ; thus, if all the

terms of (1) be transposed to the first member, it becomes, collecting the equal

powers of x, a and a', /3 and 13', &c.,

(A-A')xa+(B-B')x+(C-C')xr+, &c., =0;
from which, since A=A', B=B', &c., we perceive that when a function of

x is equal to zero for all values of x, the coefficients of the different powers of

i are equal to zero separately.

EXAMPLES.

(1) Expand the fraction --
. 3

into an infinite series.

Assume --
* A variable quantity is one which is either entirely indeterminate, so tljat it inav have

any value at pleasure, or one which varies in conformity with certain conditions imposed.
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in which some of the coefficients A, B, C, &c., may be zero, and thus certain

powers of x be wanting; then, multiplying by 1 2.r-j-a;
2
, we have

l=A-f 6x4- Ca?

2Ax 2Bx2

Hence, by the preceding theorem, we have

A=l .-. A= ... =1
B 2A=0 B=2A =2

C-2B+A=0 C=2B A=3
D 2C+B=0 D=2C B=4
E 2D+ C=0 E=2D C=5

&c. &c.

Therefore

The equality of a function to a series is hypothetical ; and after A, B, C, . . .

have been found, the result must be carefully examined. If we put the func-

tion-r=A+B.r-j-, &c., it gives the absurdity 1=0. We must put
3x x2

=Ax-14-Bx+ Cz-4-Dz2+, &c. The method of indeterminate coeffi-

3x z2

cients is to be avoided where other methods will apply.

(2) Extract the square root of \-\-x.

Assume T/T+lc=A. -\-Bx -f-Cz
2

-\-'Dr
>

-\
---- , and square both sides ;

Hence, equating the coefficients of the like powers of x, we have

A2=1.-.A= 1111
2AB 1 B= = = -
&r\.u i .i_ _ ,

j.
- . \ X & rit

B8 1 1

2AC4-B2=0 C= -^- = 2^= g

BC 1 1

2AD4-2BC=0 D= r= ^= jg

2BD+ C 2

2AE4-2BD+ C 3=0 E=- ^~
&c. &c.

Therefore

.j.
_

(3) Decompose -: rr- -r into two fractions having simple binomial de-
ar
2

i3x-\-W
nominators.

By quadratics we find x2 13x-{-W(x 5)(x 8) ; hence we may assume

3x 5 A B A(x 8)+B(.r 5)_(A+B).r 8A 5B_ __
x bx 8

=
(x 5)(x 8) 0^13x4-40

.-. 3x 5=(A+B)x (8A+5B) ;

and by the principle of undetermined coefficients we have

A+B=3, and 8A+5B=5.
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Whence A= and B= ; and therefore we get
> ,>

3x_5 61 3k 19 1 10 1

x3
13x4-40~~x 8 x 5 3 'x 8 3

'

x o

Note. The values of A and B might have been determined in the following
manner :

3x 5 A JB A(x 8)4-B(x 5)

x3 13x4-id~x 5+x 8~ x2
13x4-40

;

.-. 3x 5=A(x 8)4-B(x 5).

Now this equation must subsist for every value of x ; and therefore,

if x=5, we have 15 5=A(5 8); .-. A= =-
;o o o

if x=8, we have 24 5=B(8 5) ; .-. B=^
4

~=^.y D o

This method may frequently be employed with advantage, and will be found

useful in the integration of rational fractions, in the Integral Calculus.

EXAMPLES FOR EXERCISE.

1 x
(1) Expand into an infinite series.

i-\-x

Ans. 1 2x4-2x
2

Sr'-fSz
4 2^+

(2) Expand -/a
2 x3 in a series.

_x^ _z*_ _2_ 53*
DS ' a~~~~~~ .....

_x
(3) Find the development of .

1-j-x-J-x-

Ans. 1 Sx+x^+x3 2r1+xs+x6

2x+3
(4) Decompose the fraction

2x'

AA nq
2x

l+2x
(5) Expand the fraction - in a series.

j. ^~~O3T

Ans.

x2

(6) Resolve .w_.w. 3 v into partial fractions.

1 4
S ' +

x+22(x+3)'
134-21X+ 2x

(7) Resolve -. .
.

. . into partial fractions.
1 5x3

4- 4x*

1 6 2 16
Ans - ~

x^ 14-2x^1 2x'

* When the denominator is composed of equal factors, such as (x-f-a)
3
, (x i), it will be

necessary to assume the given function equal toABODE
'
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a bx
(8) Expand to four terms.

a-\-cx

x I g

(9) Resolve
^
- into partial fractions.

Am '

(10) Resolve -rr--.-.
,

, into partial fractions.
' s *

1.1.2. 1 7
Ans. -+ -{

---r---- ____
Xs x* x 2(1 x)^ 4(1 x} 4(1 +z)

z3

(11) Expand , ,

--
:

- to four terms.
x* -\-1ax-\- a?

(12) Resolve - into partial fractions.
3T*~^ A

2a 3a2 4a3
i i iXX2 X3

LOGARITHMS.

210. LOGARITHMS are artificial numbers adapted to natural numbers, in

order to facilitate numerical calculations ; and we shall now proceed to explain

the theory of these numbers, and illustrate the principles upon which their

properties depend.
DEFINITION. In a system of logarithms, all numbers are considered as the

powers of some one number, arbitrarily assumed, which is called the BASE of
the system, and the exponent of that power of the base which is equal to any

given number is called the LOGARITHM of that number.

Thus, if a be the base of a system of logarithms, N any number, and x such

that

N=a*,

then x is called the logarithm of N, in the system whose base is a.

The base of the common system of logarithms (called, from their inventor,
"
Briggs's Logarithms") is the number 10. Hence, since

(10)= 1, is the logarithm of 1 in this system,

(10)
1= 10, 1 is the logarithm of 10 in this system,

(10)
2= 100, 2 is the logarithm of 100 in this system,

(10)
3= 1000, 3 is the logarithm of 1000 in this system,

(10)
4=10000, 4 is the logarithm of 10000 in this system,

&c. = &c. &c

211. In order to have the numbers corresponding to the logarithms 1,
A

or]

0.5, j-
or O.i5, &c., it is necessary to extract the square, 4th, and so on, rooli

of 10, or tc <a.&&:-t the square root successively, as exhibited in the following!

table :
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XF.::K- r u: tSU ':.-.:
'

.::

square root is eitracted

saccewireljr.
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and 1, i. e., is a fraction. The logarithm of every number between 10 and

100 is some number between 1 and 2, i. e., is 1 plus a fraction. The logarithm

of every number between 100 and 1000 is some number between 2 and 3, i. e.,

is 2 plus a fraction, and so on. The whole number, or integral part of the

logarithm, is called the index, or, more commonly, the characteristic.

212. In the common tables of logarithms the fractional part alone of the

logarithm is registered, and from what has been said above, the rule usually

given for finding the characteristic, or index, will be readily understood, viz. :

The index of the logarithm of any number greater than unity is equal to one

less than tfie number of integral figures in the given number ; for if the num-

ber be between 10 and 100, it will contain two integral figures ; if between 100

and 1000, it will contain three, and so on. Thus, in searching for the logarithm

of such a number as 2970, we find in the tables opposite to 2970 the number

4727564 ; but since 2970 is a number between 1000 and 10000, its logarithm

must be some number between 3 and 4, i. e., must be 3 plus a fraction ; the

fractional part is the number 4727564, which we have found in the tables ;

prefixing to this the index 3, and interposing a decimal point, we have 3.4727564,

the logarithm of 2970.

We must not, however, suppose that the number 3.4727564 is the exact

logarithm of 2970, or that

2970= (10)
3 - 47275

accurately. The above is only an approximate value of the logarithm of 2970 ;

we can obtain the exact logarithms of very few numbers ; but, taking a sufficient

number of decimals, we can approach as nearly as we please to the true

logarithms.

213. It has been shown that in Briggs's system the logarithm of 1 is ; con-

sequently, if we wish to extend the application of logarithms to fractions, we
must establish a convention by which the logarithms of numbers less than 1

may be represented by numbers less than zero, i. e., by negative numbers.

Extending, therefore, the above principles to negative exponents, since

1Q
or (10)-

1 =0.1, 1 is the logarithm of .1 in this system,

100

1

1000

1

or' (10)-
2=0.01, 2 is the logarithm of .01 in this system,

or (10)-
3=0.001, 3 is the logarithm of .001 in this system,

or (10)-
4=0.0001, 4 is the logarithm of .0001 in this system,10000

&c. &c.

It appears, then, from this convention, that the logarithm of every number!

between 1 and .1 is some number between and 1 ; thb logarithm of everjj

number between .1 and .01 is some number between l and 2 ; thtj

logarithm of every number between .01 and .001 is some number betweei
1

2 and 3, and so on.

From this will be understood the rule given in books of tables for findin;

the characteristic, or index, of the logarithm of a decimal fraction, viz. : T/

dex of any decimal fraction is a negative number, equal to unity, added

number of zeros immediately following the decimal point. Thus, in searchin

for a logarithm of the number such as .00462, we find in the tables opposite I
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46-2 the number 6646420; but since .00462 is a number between .001 and .01,

its logarithm must be some number between 3 and 2, i. e., must be 3

4
)lus a fraction ; the fractional part is the number 6646420, which we have

found in the tables; therefore 3+ .6646420 is the logarithm of .00462. It

is customary to write the sign over the characteristic to show that it affects

that alone, and not the decimal part of the logarithm, whi( h is positive ; thus,

3.6646420.

GENERAL PROPERTIES OF LOGARITHMS.

214. Let N and N' be any two numbers, x and x1
their respective logarithms,

a the base of the system. Then, by definition,

N =a* ................ (1)

N'=a" ................ (2)

I. Multiply equations (1) and (2) together,

.. by definition, x-\-x" is the logarithm of NN' ; that is to say,

The logarithm of the product of two or morefactors is equal to the sum of the

'agarithms of those factors.

II. Divide equation (1) by (2).

N
.-. by definition, x x' is the logarithm of^ ; that is to say,

The logarithm of a fraction, or of the quotient of two numbers, is equal to the

logarithm of the numerator minus the logarithm of the denominator.

III. Raise both members of equation (1) to the nth power.
N n=a".

.-. by definition, nx is the logarithm of N" ; that is to say,

The logarithm of any power of a given number is equal to the logarithm

of the number multiplied by the exponent of the power.

IV. Extract the /1
th root of both members of equation (1).

1 X

N"=a.
i

.-. by definition, is the logarithm of Nn
; that is to say,

The logarithm of any root ofa given number is equal to the logarithm of the

number divided by the index of the root.

Combining the last two cases, we shall find

mx ?
whence is the logarithm of N'.

It is of the highest importance to the student to make himself familiar with

the application of the above principles to algebraic calculations. The following

iples will afford a useful exercise :

(1) Log. (a, b,c,d )= log. <z+ log. &-j- log. c-\- log. d ....

(abc\
(2) Log. I -i- ) = log. a+ log. 6+ log. c log. d log. e.
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(3) Log. (a
m 6"cP )=m log. a-\-n log. &+j' log. c....

(a

m6n\

j-J
=m log. a+n log. i p. log. c.

(5) Log. (a
2

;r
2

)=log. (a -r-:r)X (.?)= log. (<*+*)+ log. (ax).

(6) Log. V 2-*2

=2 log. (a+*)+ 2 -g- (ax).

1 3 15

(7) Log. (a
3 Va3

)
= log. a3

+| log. a3=3 log. a+- log. =-j log. a.

m m
(8) Log. V( 3-^)m=-log. (-*)+- log. (tf

= |lg-(0 z)+log.(a+a:+z)+log. (a+.r 2)}
IV

where 22=az.

(9) Log. ^/a--\-x^=-\\og. (a+x+z)-f- log. (a+x z)}, where z"=2ax.

TABLES OF LOGARITHMS.
mhe principal French tables are those of M. Callet, an American edition of

which has been made by the late Mr. Hasler. The first of these tables,

marked Chiliade I., occupying only five pages, contains the series of numbers

from 1 up to 1200, with their logarithms expressed to eight places of decimals,

the numbers being in the column marked N, and their logarithms in the column

marked Log.* The second table, which is of far greater bulk, exhibits the

logarithms of all entire numbers from 1020 up to 10800. The numbers are in

the column entitled N, and their logarithms in the following column, marked 0.

The characteristics of the logarithms are not written in the tables, since they

may be known without, being always one less than the number of digits of

which the number to which the logarithm belongs is composed. The logarithms

of numbers containing one figure more than those in the column N, are found

by means of the columns marked at top 1, 2, 3, ... 9. Thus, to fin.l the

logarithm of 27796, seek in the column N the number 2779 ;
run along the

horizontal line which contains this number to he column marked 6 ; you find

there the last four figures of the logarithm sought: the first three figures of it

are found in the column marked 0, to the left of the period, on the same

horizontal line, or a little above. You obtain thus, after prefixing the proper

characteristic,

log. 27796=4.4439823.

It will be seen, by inspecting the tables, that the differences of the consecu-

tive logarithms is constantly the same for a considerable number of them, and

as the differences of the consecutive numbers is also constant, it follows that

* This table also contains an arrangement for reducing minutes and seconds to seconds

without the trouble of multiplying by 60. Thus, on the fourth page, we find 12' in the first

of the columns marked log., and against 00, in the first column marked ", we find 740)

which is the number of seconds in 1& 20". By this arrangement we find readily the

logarithm of the seconds in any given number of minutes and seconds, which is oft.

venient in astronomical calculations. It is evident that these numbers might be eonsi

as degrees aisd minutes, or hours and minutes, as well as minutes and seconds.
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the differences of the logarithms are proportional to the differences of the

numbers. Suppose, then, that the logarithm of 14518469 were required.

From the tables we find, as before, neglecting for the present the charac-

teristic (see a page of the tables of Callet at the end of this volume),

log. 14618=1619068.

This is also the logarithm of 14516000, which differs from the logarithm of

the next number 14519, or 14519000, viz., 1619367 by 299, while the num-
bers themselves differ by 1000. But the number 14518000 differs from the

given number 14518469 by 469, the last three figures not yet used
; hence

the proportion
DiCSos- DiCLogs. DitJfos. Dif.ofLogs.

1000 : 299 :: 469 : x=141,
which result, added to 1619068, gives 7.1619209 for the logarithm required, 7

being ^the proper characteristic for the logarithm of a number consisting of

eight figures.

299
The proportion is solved by multiplying the difference 469 by , or by

29 9

_|. -}_. Now, by inspecting the last column of the page, this differ-

ence, 299, will be found ready calculated, and its product as nearly as it can be123
expressed in two or three figures by , , , &c., or .1, .2, .3, &c., the

multiplier being in the left hand and the product in the right hand of the two

small columns of figures under the difference, 299. These multipliers may be

regarded as hundredths or thousandths, only giving the products their proper

place. With this explanation, the following calculation will be understood :

Log. 14518 1619068

0.4 120

0.06 18

0.009 3

Log. 14518469 7.1619209

215. To find the number corresponding to a given logarithm, say 1619209,

look in the column marked for the nearest less logarithm, and take the cor-

responding number, which is 1451. Run the eye along the horizontal line till

the number most nearly approaching 9209, forming the last four figures of the

given logarithm, is found. This is 9068, which is found in column 8. Sub-

tract this from 9209, and the difference is 141. Find in the right hand of the

two columns of small figures marked dif. et p., or simply dif., at the top of the

page, the nearest less number than 141 ; this is 120, which answers to 4 in

the left hand. The difference between 120 and 141 is 21. Multiply 21 by
10, and seek, as before, in the small column, the number nearest 210 ; this is

209, which answers to 7. The calculation is below.

Log. =1619209
For 1619068 14518

First remainder, 141 04

Second remainder, 21 007

x= 1451847.

The numbers 4 and 7 thus found may be simply annexed to 14518.

* The number in the table is 179 ; but, as the 9 is rejected, the 7 is increased by 1, since

179 is nearer 180 than 170.
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If the characteristic of the logarithm had been

6, the number would have been 1451847 ;

5, the number would have been 145184.7
;

4, the number would have been 14518.47 ;

1, the number would have been 14.51847 ;

0, the number would have been 1.451847 ;

1, the number would have been .1451847 ;

2, the number would have been .01451847.

This table contains in the first three columns an arrangement for reducing

any number of degrees, minutes, and seconds, or hours, minutes, and seconds,

to seconds, which is particularly useful in astronomical calculations, where the

logarithm of the number of seconds in a given number of degrees, minutes, and

seconds is frequently required.

EXAMPLE I.

Reduce or (f
1 24' 57" to seconds. In the table (see last page), at the

head of the first column, find 0, and immediately under it 24' ; descending
this column to 55", near the bottom, and opposite 57", which is understood to

be two numbers below, is found 1497, the number of seconds required.

If the degrees or hours exceed 3, the proceeding is different.

EXAMPLE II.

To reduce 4 or 4' 1 2' 39" to seconds. Find 4 0' at the head of the

second column, and below, in this same column, 2' 30", to which corresponds,

in the third column, 1455. Thus, 4 2' 30"= 14550" .-. 4 2' 39"=14559"

EXAMPLES OF THE APPLICATION OF LOGARITHMS.

(1) To find the value to within 0.01 of the expression

7340 X 3549
>T=

681.8X 593.1'

By the properties of logarithms,

log. x= log. 7340+ log. 3549 log. 681.8 log. 593.1.

The following is the calculation :

log. 7340=3.8656961

log. 3549=3.5501060

sum =7.4158021

log. 681.8=2.8336570

log. 593.1=2.7731279

sum =5.6067849

First sum, =7.4158021

Second sum, =5.6067849

Diff. or log. x= 1.8090172

216. The arithmetical complement of a logarithm is what remains after the

logarithm is subtracted from 10. Thus, the arithmetical complement of the

logarithm 2.7190826 is 102.7190826=7.2809174, which is obtained by be-

ginning on the right and subtracting each figure (carrying 1 to all except tho

first) from 10, or beginning on the left and subtracting each figure of the

logarithm from 9, except the last, which is subtracted from 10.

217. The operation of subtraction of logarithms can be replaced by addition,

if we use the arithmetic complement ; for if, to a given logarithm, log. a, we
add the arithmetical complement of another logarithm, such as 10 log. 1>

we have



LOGARITHMS. 265

log. a -j- 10 log. 6,

from which, rejecting 10, the result is

log. a log. b,

the same as would be obtained by simply subtracting the second logarithm

from the first. .

We have then the following rule for operating with arithmetical comple-
ments : Add the arithmetical complements oftfie logarithms of the divisors and

the logarithms of the multipliers of a formula together, rejecting 10 from the

sumfor every arithmetical complement employed.

The above example would be wrought by this rule as follows :

tog. 7340=3.8656961

log. 3549=3.5501060

ar. comp. log. 681.8=7.1663430

ar. comp. log. 593.1=7.2268721

sum rejecting 20=1.8090172=log. z, .-. x=64.42.

We thus obtain the same result as by the other method. The number cor-

responding need be taken from the tables only to four figures, because, the

characteristic being 1, the entire part of the number will contain but two

places, which will leave two places for the decimal part, as required, since the

value of x was to be obtained to within 0.01.

(2) To find the value within 0.00001 of the quotient.

(V988789)
5

By the rules,

log. z=f log. 146298 f log. 988789,

and the calculation will be as follows :

| log. 146298.

log. 14629 0.1652146

for 0.8 . 238

log. 146298 5.1652384

product by 4 20.6609536

quotient by 5 4.1321907

|- log. 988789.

log. 98878 0.9950997

for 0.9 . 40

log. 988789 5.9951037

product by 5 ..... 29.9755185

quotient by 6 4.9959197

| log. 146298=4.1321907
ar. comp. flog. 988789=5.0040803

sum 10, or log. 1=1.1362710
.-.x=0.13686.

13
(3) Required ^/^ by means of logarithms.

13 log. 1.1139434

27 log. 1.4313638

11)1.6825796

>>/ =.9357149 log. 1.9711436
V27

The division by 11 is performed by adding 10 to the negative part of the

logarithm and -4-10 to the positive.

The logarithm to be divided is viewed as if written thus :

11+ 10.6825796.

/>!-V27'
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EXERCISES iy LOGARITHMS.

(4) Calculate the logarithm of 8 from the table on page 259.

(5) Also of 7, 70, 700, 7000, 70000.

(6) Also of 356, 35600, 3560000.

(7) From the tables find the logarithms of 314, 3.721, 41.2.

(8) Also of 7315, 8416, 91.75, 34760, 1708000.

(9) Find the numbers the logarithms of which are 0.13130, 4.56502.

(10) Also those the logarithms of which are 3.6520528, 7.4891144.

(11) Those the logarithms of which are 4.49010, 0.66200, 5.72403.

(12) Find by proportional parts the logarithms of 314761, 440736, 37023400,

2111768.

(13) Also of 22.3345, 137.2014, 46.27835.

(14) Of .75, .341, .7391, .0347, .000536, .0000083.

nf 3

15) Of -, -, , ,

JQ.

(16) Find the logarithm of the product of 9.734 and 5.639.

(17) Also of 35.98 X 7.433 X 6.543 X 29.78.

(18) Also of 22.74X31.201X0.0067X0.9298.

(19) Divide 3758000 by 4986 by means of logarithms.

(20) Also 16.87:0.07658 and 1.687:7658.

<21) Also 14.307:30415, 761.23:0.01871, 3.16:0.942.

..
7 125 31 734 1

(22) Find the logarithm of, , , , _.
(23) Find the power (5486)

4
by means of logarithms.

(24) Also the powers (37.49)
9

, (106.4)
5
, (0.032)

7
, (7.0034)

8
.

/1\ 33 /3\ 4 /1\ 5 /3V /127V3

(25) AISO y , $ , y , (-) ,

(m)
.

I 1\ 6 / 1\
8 / 20\

9 / 1 \
3

Also (3+g) , (4--) ,
(
7+-) , (lOO-jJ :(26)

(27) Find the cube root by logarithms of 1728000.

(28) Also V34-782, -y/23990, V628.73.

<29 ) ^^'\'709r' v -1563 '

(30) Also ^7368,
1(^ 45390000, 7

/800.9.

(31) Also ^(1347)
8
, V(70.44)

11
, ^(8.664)

1
a.

1722\
5

//0.006\
25 J/72.93\ 7

*
(32) Also

(33) Find by means of logarithms, using the arithmetical complement, the

27630X2678X5428

36940X5302X7013'
207.3 X 50.66 X 38.09 X 2713 X 0.098

34) Also of
344 X0-763x 0.4 x 6984 x 7034.2

.85762X 0.00853/0

V 7.58913X86.24

GAUSS LOGARITHMS.

218. The common logarithms, or logarithms of Briggs, are applicable only to

the operations of multiplication, division, formation of powers, or extraction of

roots, and do not apply when the required operation is that of addition or sub-
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traction, indicated in formulas by the quantities to be operated upon being con-

nected by the signs -|- and .

A system of logarithms has, however, been invented by Gauss,* designed

exclusively for sums and differences. The arrangement of these tables, which

contain three columns, marked A, B, C, is founded upon the following simple

considerations.

We have for the form of a sum p-{-q, and of a difference p q, the follow-

ing identities :

(1)

.-. log. (p+q)= log.p+ log. (3)

and log. (pq)= log. p log.

The logarithms of the sum p-\-q and the difference p q appear, therefore,

in these formulas, equal to the sum or difference of two logarithms, the first

of which is to be considered as directly given, but the second of which must

be found by the Gauss tables. They contain,

I. In the column A logarithms of numbers of the form (-), increasing from

0.000 to 5.000. .

II. In column B logarithms of numbers of the form (
J, decreasing

from 0.30103 to 0.00000.

III. In column C logarithms of numbers of the form , increasing from

0.30103 to 5.00000.

Now, therefore, inasmuch as log. (-)= log. p log. q. by the tables of

common logarithms, the first thing to be done is to take the difference of the

common logarithms of p and q, enter with this column A in the Gauss loga-

rithms, and take out the corresponding number from column B. The addition

of tliis number to logarithm p will give, according to (3), the logarithm sought

ofp+q.
In order to find the logarithm of the difference p q, by means of the loga-

rithms ofp and q, two cases must be considered :

p
1. Where -<2 .-. log. p log. <7<0.30103, it is only necessary to enter

with this difference column B, and to subtract the adjoining logarithm of

column C from logarithm p. For, corresponding to the logarithms of numbers

pq)
P

2. If ->2 .-. log. p log. g>0.30103, and, therefore, is contained in

nf the form ( )
in B, C contains the logarithms of those of the form l^- ).

\9/ \p-qJ
P

2. If->2 .-. log. p log. 9>0.30103, and, therefore, is contained in

the column C ; subtract the corresponding logarithm hi column B from loga-

*
They are found in the latest edition of the tables of Vega, and those edited by Kohler.
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P
rithra p ; because, if the numbers in C are considered = , the corresponding

P
numbers in B are =-

P 9
The existence of the foregoing relations between B and C is easily per-

ceived if we substitute in II. and III. the value p q for p, and afterward q

forp q.

EXAMPLES.

(1) Let log. p= 3.24502 and log. g=2.74194, to find log. (p+ q). We
enter column A with the log. p log. 5=0.50308, and the corresponding log.

in column B= 0.11861, .-.

log. j?+B=3.24502+0.11861=3.36363= log. 2310.

(2) From log. p =3.32675 and log. 9=2.09482, to determine log. (p q).

Find by means of proportional parts for the value of log. p log. q in column

B the corresponding log. in C=0.38325; consequently,

log.p 0=3.32675 0.38325=2.94350= log. 878.

(3) From log. p=2.64207 and log. q=l.87640 the log. of (pq) is found

by subtracting from the nearest value of log. p log. q=0.76567, in column

C, the corresponding log. from B =0.08171. Thus,

log.p 6=2.642070.08171=2.56036= log. 363.4.

The Gauss logarithms would be applicable in the solution of the exponentials
on page 269. 4

(4) Find by the Gauss logarithms the log. of ^200+ ^/100.

(5) Also the log. of [(0.7345)
3
-f-(0.2349)

3
].

(6) Also the log. of the difference
( V36 V27).

(7) Also of {(1.237)
14

(0.9864)
16

}.

219. Let us resume the equation

N=a*.

1. If >1, making ,r=0, we have N=l ; the hypothesis x=l gives

N=a. As x increases from up to 1, and from 1 up to infinity, N will in-

crease from 1 up to a, and from a up to infinity ; so that x being supposed to

pass through all intermediate values, according to the law of continuity, N in-

creases also, but with much greater rapidity. If we attribute negative values

to x, we have N=a~x
, or N= . Here, as x increases, N diminishes, so

that x being supposed to increase negatively, N will decrease from 1 toward

0, the hypothesis .T=QO gives N= ; i. e., the logarithm of zero is an infinite

negative quantity.

2. If a<l, put a= T, where 5>1, and we shall then have N=^, or

N= Z>*, according as we attribute positive or negative values to x. We here

arrive at the same conclusion as in the former case, with this difference, that

when x is positive N<1, and when x is negative N>1.
3. If a= l, then N=l, whatever may be the value of a-.

From this it appears that,

I. In every system of logarithms the logarithm oflisO, and the logarithm

of the base is 1.
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II. If the base be >1, the logarithms of numbers >1 are positive, and OIK

logarithms of numbers <1 are negative. The contrary takes place if the base

be <1.
III. The base beingfixed, any number has only one real logarithm ; but the

same number has manifestly a different logarithmfor each value of the base, so

that every number has an infinite number of real logarithms. Thus, since

93=81 and 3*=81, 2 and 4 are the logarithms of the same number 81, accord-

ing as the base is 9 or 3.

IV. Negative numbers have no real logarithms ; for, attributing to x all

values from x> up to -f-
oo

, we find that the corresponding values of N are

positive numbers only, from up to -|-a

220. In order to solve the equation

c=a1
,

where c and a are given, and where z is unknown, we equate the logarithms
of the two members, which gives.us

log. c=x log. a.

Whence

_ log' c
~

log- a'

To determine the value of x in the equation

we have

C
+ + .........)=P. .

Qa* =P,
substituting Q for the term in the parenthesis.

^ log. P- log. Q
log. a

If we have an equation aT=b, where z depends upon an unknown quantity,

x, and we have

log. b
Since z= -,

-=K some known number, the problem depends upon the solu-

tion of the equation of the ntu
degree

K=Az-fBzn-1

-t- ............

For example, let

4l;J =9.

Hence

(z
2

5z+4) log. (o)= log- 7

.-. z3 5z+4 =2;*
an equation of the second degree, from which we find z=2, z=3.

/3\2 Q o n
* This result may be readily seen by observing that

\-f
=- .: 2 log. -= Jog. -, and log.

3 2
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To find the value of x from the equation

1 aking the logarithms of each member,
/ _a\
\ x) ~r\ P) &'Ji

or

(m log. c+ log./)*
2

(n log. &+p log./)x+a log. 6= 0,

a quadratic equation, from which the value of a: may be determined.

In like manner, from the equation

we find

log. a log. b

m log. c n log. b'

Equations of this nature are called Exponential Equations.
To resolve the exponential equation

/HA* 8493

\337/ ~~73~'

By the rule,

x(log. 117 log. 337)= log. 8493 log. 73

log. 8493 log. 73
' ' X=

~log. 337 log. 117
~

Calculation,

8493 log. 3.9290611

73 log. 1.8633229

337 log. 2.5276299

117 log. 2.0681859

diff. 2.0657382 ... .............. log. 0.3150752

diff. .0.4594440 log. 1.6622326

x= 4.49616 log.=diff. 0.6528426

This example admits the use of the Gauss logarithms.

Let 10"= 100 .-. x log. 10= log. ( 100) ; log. ( 100) here must be re-

garded, like an imaginary quantity, as a symbol of absurdity. It is evident that

there is no power of 10 equal to 100.

221. Let N and N-j-1 be two consecutive numbers, the difference of their

logarithms, taken in any system, will be

log. (N+ l)- log. N= log. p = log-

a quantity which approaches to the logarithm of 1, or zero, in proportion as

^f
decreases, that is, as N increases. Hence it appears that

The difference of the logarithms of two consecutive numbers is less in propor-

tion as the numbers themselves are greater.

Let ax=N and 6y=N ; then we have

x= log. N to the base a, or x= log. N*

y= log. N to the base ft, or y= log. bN.

Hence log. aN= log. J)*=y log. J) (Art. 214, III.) ;

.-. x=y log. a&,

*
Understanding by the notation log. aN the logarithm of N in the system whose base

Is a.
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and

and by means of this equation we can pass from one system of logs, to another,

by multiplying x, the log. of any number in the system whose base is a, by the

reciprocal of log. b in the same system ; and thus we shall obtain the log. of

the same number in the system whose base is 6.

The factor :
-

-. is constant for all numbers, and is called the Modulus ,

log., 6

that is to say, if we divide the logs, of the same number e, taken in two sys-

tems, the quotient will be invariable for these systems, whatever may be the

value of c, and will be the modulus, the constant multiplier which reduces the

first system of logs, to the second.*

If we find it inconvenient to make use of a log. calculated to the base 10, we
can in this manner, by aid of a set of tables calculated to the base 10, discover

the logarithm of the given number in any required system.
For example, let it be required, by aid of Briggs's tables, to find the log. of

2
. .5- in a system whose base is -.

o 7

Let x be the log. sought, then by (A)
2

log. 2 log. 3

log. 5 log. 7"

Taking these logs, in Briggs's system, and reducing, we find

0.176091-3.5
X~

0.14612604

2 5
=1.2050476= log.

- to base -.
> 7

2 3
Similarly, the log. of -, in the STOtem whose base is ^,

is

_log.
2 log. 3_ar=

log. 3 log. 2
=~ 1 '

which is manifestly the true result; for in this case the general equation
2 /3V /2\-T

N=ax becomes -=
\-J

I -I
, and z is evidently = 1.

In a system whose base is a, we have

log. nn=a
t

*
;

for, by the definition of a logarithm in the equation n=a*, x is the log. n.

In like manner,

* The term Modulus, of a system of logarithms, is generally understood to be the num-

ber by which it is necessary to multiply Napierian logarithms of numbers, in order to ob-

tain the logarithms of the system in question. The peculiar character of Napierian loga-

rithms will be presently explained.



272 ALGEBRA.

EXAMPLES FOR EXERCISE.

(1) Given 23x+2x=12 to find the value of x.

(2) Given x-\-y=a, and m(x
~

y)= to find x and y.

(3) Given m*ra*:=a, and hx=Jcy to find x and y.

ANSWERS.

(1) z=l-584962, orzr=log. ( 4)-^-log. 2.

(2) x=l\a-{- log. 4- log. TO} and 7/=f a log.n-r- log. m}.
ft

(3) = log. a4-(log. m-\- log. n) and y=r log. a~(log. w+ log. n).

THE EXPONENTIAL THEOREM.

222. It is required to expand a1 in a series ascending by the powers of x.

Since a=l-{-a 1, thereforea :[

={l-j-(a 1)}"; and by the binomial theorem

we have

x 1) x(x iVa; 2)
3

where B, C . . , . denote the coefficients of a;
2
, x3 ..... ; and if we put

A=(a-l)-i(a-l)2+M
Thena 3t= l+Aa:+Bx2+Ca:3+D.r4+E
For x write 0:4-^ >'

then we have

(a:+fe)
2+

x3 Dr1

+ Ch3 --toz/i3
^-----

+ DA* +....

=1 4-A.r+Ba;
2 +Cr5 4-Dx4

. -f B/i2 -f AB.r/i2 - B^fe3 - -----

4-c/t
3

Now these two expansions must be identical ; and \ve mast, therefore, have

the coefficients of like powers of x and h equal ; hence

2B=A2
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Let e be the value of a, which renders A= l, then

Now, since tliis equation is true for every value of x, let z=l ; then

1 1 1
1+F2+f^

=2-718281828459 ......

223. We add another method of calculating the logarithm of any given

number.

Let N be any given number whose logarithm is x, in a system whose base

is a ; then

a'=N and da=Nt
.

Hence, by the exponential theorem, we have from the last equation

and equating the coefficients of z, we get Ar=A 1 ; hence

A. (N-l) |(N 1)*+MN i)
3

*-A-(a -l)-l(a-l^H(a-l)3-.... ;

because A =(a 1) \(a l)--\-(a I)
3 ... in the expansion of a=

and A,=(N 1) i(N l)
2
-f|(N I)

3 in the expansion of N !

224. To find the logarithm of a number in a converging series.

We have seen that if a*=N, then

Now the reciprocal of the denominator is the modulus of the system ;*aad,

representing the modulus by M, we have

*= log. N=M{(N-l)-i(X-l)M-|(N-l)*-j(N-l)<+...f
Put N=l-{- n j then N l=n, and we have

log. (l+7i)=M(+ ra-is+^_X+in'-...) . .
,[A1

imilarly, log. (1 n)=M( n in* i/i
3 n in5 . .

.)

.-. log. (1+n)- log. (l-n)=2M( +X+in*+X+"-)

*
If, in the expression for az deduced in (Art. 222), we make x= , we obtain

rhk-ri is the value f e, given at the end of the same art :

.-. 3r=e ...0=^ ... A log. e= log. a / i= =
A log. a log. a'

if e be the base cf the system of logarithms expressed by toe. Therefore = is,

.
A log. a

ay a previous definition (Art. 221), the modulus for passing from the system whose base it

to that whose base is a. If log. a refers to the hue a,
- becomes equal to log. e.
At
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1 2P-J-2 2P l+ P+ l

Put n=~; then 1+^-r, 1- R= '
a d \~n

=~F~
consequently,

log. (p+i)- log. p=2M

- lo - (p+ 1)= lo - P+2M

Hence, if log. P be known, the log. of the next greater number can be found

by this rapidly converging series.

By substituting the series of natural numbers for N in this formula, the cor-

responding values of x will be their logarithms.

224. To find the Napierian logaritiims ofnumbers.

Jn the preceding series, which we have deduced for log. (P+ l), we find a

number M, called the modulus of the system ; and we must assign some value

to this number before we can compute the value of the series. Now, as the

value of M is arbitrary, we may follow the steps of the celebrated Lord

Napier, the inventor of logarithms, and assign to M the simplest possible

value. This value will therefore be unity, and we have

log. (P+ l)=log.

Expounding P successively by 1, 2, 3, 4, &c., we find

log. 2= 4+3^+5^+4+ ..-)= -6931472

log. 3= log.2

log. 4=2 log. 2 ........ ........ =1-3862944

log. 5= log. 44X5+3^+6^+7^+ ...)
=1-6094379

log. 6= log. 2+ log. 3 ............ =1.7917595

,og. 7= log. 6+2(i+ ++ ......
)
=1-9459101

log. 8= log. 2+ log. 4, or 3 lag. 2 ...... =2-0794415

log. 9=2 log. 3 ................ =2-1972246

log. 10= log. 2+ log. 5 ............ =2-3025851

In this manner the Napierian logarithms of all numbers may be computed.

225. Tofind the common logarithms of numbers.

The base of the Napierian system is =2-718281828 . . ., and the base of thB

common system is 6= 10, the base of our common system of arithmetic ; then

we have 5= 10, and a==2-718281828. . ., and consequently, if N denote any

number, we shall have

log. 10N= ^J-Q . log. N ;
that is,

com. log. N= -X Nap. log. N= -43429448 X Nap. log. N;*

* To find the value of the Napierian base, observe that, since com. log.*N='43429M3X

Nap. log. N., if we make in this expression N=e, the Napierian base, we havo

com. log. e=-43429448.

From a table of common logs., therefore, we find the number corresponding to the log*
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and the modulus of the common system is, therefore,

M=^ o> Q -. ='43429448 .-. 2M=-86858896
2-302o8ol

Hence, to construct a table of common logarithms, we have

log. (P+l)= log. P+ -86858896
\^

Expounding P successively by 1, 2, 3, &c., we get

log. 2=-86858896Q+l+^+...)
= -86858896 X '3465736

bg. 3= log. 2+ -86858896 + L+i+
log. 4=2 log. 2

log. 5= log. \J>= log. 10 log. 2=1 log. 2

log. 6= log. 2+ log 3 /111
log. 7= log. 6+ -86858896(^4-3:131+5^

log. 8= log. 23=3 log. C

log. 9= log. 3*=2 log.
3

log. 10= ......
&c. *

226. Since log.

1 I

let ra=P(l n), or n=

= '3010300

= -4771213

= '6020600

= -6989700

= -7781513

=
^'8450980

= -9030900

= -9542426

=1-0000000

1

P
1

and thus we have a series for computing the logs, of all numbers, without

knowing the log. of the previous number.

EXAMPLES.

(1) Given the log. of 2=0-3010300, to find the logs, of 25 and -0125.

100 103
Here 25= =; therefore log. 25=2 log. 102 log. 2=1-3979406.

125 1 1

Again, 0125=---=-=-
.-. log. -0125= log. 1 log. 103 log. 2= 1 3 log. 2=2-0969100

(2) Calculate the common logarithm of 17.

Ans. 1.2304489.

(3) Given the logs, of 2 and 3 to find the logarithm of 22-5.

Ans. 1+ 2 log. 32 log. 2.

(4) Having given the logs, of 3 and -21, to find the logarithm of 83349.

Ans. 6+2 log. 3+3 log. -21.

ridim -43429448, which is 2-7182818, the Napierian base. This also furnishes us with an-

other definition of the modulus of the common (or any other) system of logarithms ; it is the

common (or, &c.) logarithm of the Napierian base. See further note at the end of Prosres-
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PROGRESSIONS.

ARITHMETICAL PROGRESSION.

227. WHEN a series of quantities continually increase or decrease by the

addition or subtraction of the same quantity, the quantities are said to be in

Arithmetical Progression. A more appropriate name is Progression by Dif-

ferences.

Thus the numbers 1, 3, 5, 7, ..... which differ from each other by the ad-

dition of 2 to each successive term, form what is called an increasing arith-

metical progression,
or progression by differences, and the numbers 100, 97,

94 ? 91 1
..... which differ from each other by the subtraction of 3 from each

successive term, form what is called a decreasing progression by differences.

Generally, if a be the first term of an arithmetical progression, and 6 the

common difference, the successive terms of the series will be

in which the positive or negative sign -will be employed, according as the series

is an increasing or decreasing progression.

Since the coefficient of <5 in the second term is 1, in the third term 2, in the

fourth term 3, and so on, in the th term it will bb n 1, and the wth term of

the series will be of the form

a(n-l)<5 ....... (1)

In what follows we shall consider the progression as an increasing one, since

all the results which we obtain can be immediately applied to a decreasing

series by changing the sign of 6.

228. Tofind the sum ofn terms of a series in arithmetical progression.

Let a= first term.

1-= last term.

6= common difference.

ra= number of terms.

S= sum of the series.

Then S=a+(a+<5)+ (a+2c5)+ ...... + L

Write the same series in a reverse order, and we have

S= l+(l-3)+(l-M)+ ......+ a

Adding, 2$= (a+l)+ (a+l)+ (a+l) + ......+(+*)
=n(a-\-l), since the series consists ofn terms.

2

Or, since l=a+(n-I)6 (Art. 227),

2na+n(n 1)6
_ ^

TS

Hence, if any three of the five quantities a, I, <5, n, S be given, the remain-

ing two may be found by eliminating between equations (1) and (2).

It is manifest from the above process that

The sum of any two terms ivhich are equally distant from the extreme terms

is equal to the sum of the extreme terms, and if the number of terms in the series

be uneven, the middle term will be equal to one half the sum of the extreme terms,

or of any two terms equally distantfrom the extreme terms.
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EXAMPLE I.

Required the sum of 60 terms of an arithmetical series, whose first term ia

5 and common difference 10.

Here a=5, (5=10, n=60
.-. Z=a+(n 1)<5=5+59X 10=595

_(5+595)x60'"'
2

=600x30=18000= sum required.

EXAMPLE II.

A body descends in vacuo through a space of 16^ feet during the first

second of its fall, but in each succeeding second 32 feet more than in the one

immediately preceding. If a body fall during the space of 20 seconds, how

many feet will it fall in the last second, and how many in the whole time ?

193 386
Here a=-, <5=

, n=20

193 __ 386

7527
-=627} feet

.LA*

MQ?
12

(193+ 7527) X 20

2X12
77200

"

12

=6433i feet.

EXAMPLE III.

To insert m arithmetical means between a and Z>.

Here we are required to form an arithmetical series of which the first and

last terms, a and 6, are given, and the number of terms =m-|-2 ; in order,

then, to determine the series, we must find the common difference.

Eliminating S by equations (1) and (2), we have

2a+(n l)6=l+a

>=in 1

But here I=b, a-=a, n=m-|-2
. the required series win be

b+ma &+(m.i)a , mb+a
~^+r +i

+ ^+r
(4) Required the sum of the odd numbers 1, 3, 5, 7, 9, &e., continued to

101 terms ?

Ans. 10201.

(5) How many strokes do the clocks of Venice, which go on to 24 o'clock,

strike in the compass of a day ?

Ans. 300.
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(6) The first term of a decreasing arithmetical series is 10, the common
difference ^,

and the number of terms 21 ; required the sum of the series.

Ans. 140.

(7) One hundred stones being placed on the ground in a straight line, at

the distance of 2 yards from each other ; how far will a person travel who
shall bring them one by one to a basket which is placed 2 yards from the first

stone ?

Ans. 11 miles and 840 yards.

The relations (1) and (2), in which five quantities, a, d, re, Z, S, enter, will

serve to determine any Jwo of these when the other three are given. Thus

they furnish the solution of as many distinct problems as there are ways of

taking two quantities from among five
; and, consequently, the number of

5-4

problems will be -^-or 10. In order that they may be possible, it is recessary

that the value of n should be not only real, but entire and positive. Without

entering into the details of the calculation, we place below the solutions of

these ten problems.

I. Given

Required

II. Given

Required

III. Given

Required

IV. Given

Required

V. Given

Required

VI. Given

Required

VII. Given

Required

VIII. Given

Required

IX. Given

Required

"v n\-no.r.
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progression ; and the numbers 243, 81, 27, 9, 3, ... in which each is derived

from the preceding by multiplying it by the number -, form what is called a
3

decreasing geometrical progression.

The common multiplier in a geometrical progression is called the common
ratio.

Generally, if a be the first term and p the common ratio, the successive

terms of the series wifl be of the form

a, op, ap, of? .....

The exponent of p in the second term is 1, in the third term is 2, in the

fourth term 3, and so on
; hence the n* term of a series will be of the form,

230. Tofind the sum ofn terms of a series in geometrical progression.

Let a= first terra,

1= last term,

P= common ratio,

n= number of terms,

S= sum of the series.

Then

S =a+ap+apa+ap3
4-

Multiply both sides of the equation by p,

Sp= ap-4-ap
i+op3+

Subtract the first from the second,

S(p l)=op
n a

Or, since

.-. S= ^ ' ......... (1)
p 1

If the series be a decreasing one, and consequently p fractional, it will be

convenient to change the signs of both numerator and denominator in the above

expressions, which then become

a~pl
S=T^'

231. If two progressions have different first terms, but the same ratio, the

ratio of the sums of the two is equal to the ratio of their first terms. For

(a+ap+ops+aps-l-, &c.) : (b+bp+V+V+, &c.)

=a(l+ p + p
z+ P

3+, &c.) : Z>(1+ P+ P+ ?+, &c.)=a : b

230. It appears that if any three of the five quantities, a, I, p, n, S, be

given, the remaining two may be found by eliminating between equations (1)

and (2). It must be remarked, however, that when it is required to find p from

a, n, S given, or from n, I, S given, we shall obtain p in an equation of the nth

degree, a general solution of which can not be given. If n be required, it will be

convenient to apply logarithms, as the equation to be resolved will be an expo-
nential.
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EXAMPLE I.

Required the sum of 10 terms of the series 1, 2, 4, 8, ....

Here a=l, p=2, n=W
a(pn 1)

.*. O ^= '

_

=210 i

=1023.

EXAMPLE II.

248
Required the sum of 10 terms of the series 1, -, -, ,

o y ^ /

o

Here a=l, p=^,
n=W

2\ 10

174075
:

59049
'

EXAMPLE III.

To insert m geometric means between a and b.

Here we are required to form a geometric series, of which the first and last

terms, a and b, are given, and the number of terms =m-j-2; in order, then,

to determine the series, we must find the common ratio.

Eliminating S by equations (1) and (2),

ap
n a=pl a

But here

l=b, n=m-}-2

Hence the series required will bo

bm bm+l

or
m 1 m 1 2

233. To JinfZ the,sum of an infinite series decreasing in geometrical

gression.

We have already found that the sum of n terms of a decreasing geometries

series is
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-
1-p'

which may be put under the form

Since p is a fraction, p" is less than unity, and the greater the number n, the

smaller will be the quantity p
n

; if, therefore, we take a very great number of

apa
terms of a decreasing series, the quantity p

n
, and, consequently, the term ,

a,

will be very small hi comparison with ; and if we take n greater than any

assignable number, or make TZ= CD, then p
n will be smaller than any assignable

number, and therefore may be considered =0, and the second term in the

above expression will vanish.

Hence we may conclude that the sum of an infinite series, decreasing in

geometrical progression, is

c _
-1-p

Strictly speaking, is the limit to which the sum of any number oi

tenns approaches, and the above expression will approach more or less nearly

to perfect accuracy, according as the number of terms is greater or smaller.

Thus, let it be required to find the sum of the infinite series

111
1+3+9+27+ '

*C "

Here c=l, p=^. = oo

1-p
1

_3=
2'

3
The error which we should commit in taking

- for the sum of the first n

terms of the above series is determined by the quantity

ap
a 3/l\"

1 p~ 2\3/
'

3/l\5 1 1

Thus, if 72=5, then
-(-)

= =
;

3/l\ 6 1 1
n=6 ' then 2\3/ =2^=486-

3
Hence, if we take - as the sum of 5 terms of the above series, the amount

would be too great by -r^..
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3 1
If we take - as the sum of 6 terras, the amount will be too great by 7^,4ob

and so on.*

*
I. The theory of progressions involves that of logarithms. Let there be two progres-

sions, the one geometric, beginning with 1, the other arithmetical, beginning with 0.

-^-1:2:4:8:16:32:64:128, &c.

-H). 3. 6. 9. 12. 15. 18. 21, &c.,

which exhibit a notation sometimes employed.
If we compare these with each other, we perceive that, multiplying together any two

terms of the first, and adding the corresponding terms of the second, we obtain two corre-

sponding terms, again, of these same progressions. Thus, 4X16=64, 6-j-12=18 ;
and we

perceive that 18 corresponds to 64. Thus a multiplication is effected by addition. This

simple observation is, no doubt, very ancient
;
but it was the genius of Napier, a Scottish

baronet, which derived from it the theory of logarithms, one of the most useful of modern dis-

coveries. It was published in 1644, under the title ofMir[fid Logarithmorum Descriptio.

Logarithms, then, according to Napier, were regarded as a series of numbers in arith-

metical progression, while the numbers themselves corresponding, formed a geometrical

progression. I proceed to explain his method of constructing them.

In order that the geometrical progression should embrace all numbers greater than 1, it

is necessary to conceive it formed of terms which increase in an insensible manner, setting

out from 1
; and, to have their logarithms, it is necessary to conceive the arithmetical pro

gressiou as composed of terms which vary by insensible degrees, setting out from zero.

At their origin, the simultaneous increments which the terms 1 and receive are inap-

preciably small ; but, however small they may be, we may conceive that there is a certain

relation established between them, which is entirely arbitrary. Thus, when these incre-

ments begin to arise, we can suppose that that of the logarithm is double, triple, &c., of

that of the number 1. This relation is called the modulus of the logarithms, which desig

nate by M.

Suppose, now, that to the term 1 of the geometric progression an increment u, very

small, but yet appreciable in numbers, is given. The corresponding increment of the term

zero of the arithmetical progression will be very nearly equal to Mw ; and we can take fur

the two progressions these :

-^-1 : 1+w : (1+w)2
: (l+w)3

: (1+w)4
: &c.

-HO. Mu. 2Mw . 3Mw . 4Mw . &c.

We have said that the relation or modulus M can be taken at pleasure ; consequently

according to the values attributed to it, will be obtained different systems of logarithms.

The logarithms which Napier published were derived from the progressions

H-l : 1-fu : (l+w)2
: (l+w)3

: &c.

-HO. w. 2&> . 3u . &c.,

which supposes M=l.
This avoids the multiplications by M. The logarithms of numbers in Napier's table

serve to find those of any other system, by simply multiplying each by the modulus of that

system.
The terms of these two series vary slowly, so that, in prolonging both as far ns we please,

we are sure of finding in the first, terms equal to the entire numbers 2, 3, &c., or so new

them that the difference may be neglected. The corresponding terms of the second may
then be taken for the logarithms of these numbers, and are those written in the tables.

By this we perceive that these logarithms are not exactly those of the numbers beside

which they are written. But there is another cause of inaccuracy, viz., that w representa

only approximately the increment, which the logarithm takes when is that taken by 1.

The smaller o is, however, the greater the exactness.

II. Let it be proposed to determine the error produced by assuming that the difference of

the numbers is proportional to the difference of their logarithms, when the number of places

in the numbers is 5, and their difference not greater than 1.

If in the series [A], Art. 224, we make ?t=-, we hare
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As in arithmetical progressions, all the questions which can be proposed for

solution in geometric progressions reduce to 10, the solutions of which are de-

duced from

J=opn-1 ............ (1)

from which it appears generally that as the number x increases, the difference of the loga-

rithms of x and \-\-x diminishes. Also, since - is greater than the whole series,
-
being

diminished by more than it is increased, we have

If the base be 10, we have seen that M=0.4342 ...<-. Hence, in thid case,

If x consist of five places, its least value is 10000. Therefore the greatest value of

/(1-f-x) lx is less than -=0.00005.
20000

Hence we may infer that the logarithms of every two consecutive whole numbers con-

sisting of five places must agree in the first four decimal places at least.

Now let

A = l(l+x) lx=

But by [A], Art. 224,

(2+x) 2x2(2+ar)

If x consist of five places, its least value is 10000, and, therefore, the greatest value of

A A' is less than--=-
, which, when reduced to a decimal, has no

20000X 10002 200040000'

significant figure within the first eight places. Hence, in tables which extend only to

seven places, we may assume that A A'=0, cr A=A'.
Thus we infer that, under the circumstances \vhich have been supposed, the logarithms

of numbers in arithmetical progression will themselves be in arithmetical progression
fn

Let now n and n-j-1 be two consecutive whole numbers, and n-\- an intermediate frac-

9
tion. These may be looked upon as three terms of an arithmetical progression, whose first

term is n, whose common difference is -, whose (p+l)
a' term is n-\ , and whose (y-r-l)

til

term is w-f-1. By what has been already shown, the logarithms of the several terms of

this series will also be in arithmetical progression.

Let 6 be their common difference. The (/>+l)
th term of this series will be

ln-\-pS,

which will be the logarithm of the (p-{-\)^ term of the former series ;
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These solutions are contained in the following table :

I. Given a, p, n. ( pi a a(p
n

1)

Required I, S. i
l : =a/>

" *=
7^1

~
p 1

'

II. Given I, p, . < Z (p
n

1)

Required a, S. <
a==
^'

S=
p-i(p_l)-

III. Given a, , Z. C
n_,/Z "~y

r^ ""v'a"

Required p, S. <
p = V a'

S= n

~^l
n

~V^"
'

IV. Given p, , S. < S(p 1) Sp^p 1)

Required a, Z. 4
a==

p
n

1
'

p
"_ 1

V. Given a, n. S. < S

Required p, J. Jf^^ >+1= ' Z=a^~1
'

f
/A"-1 /IX"-2 S

VI. Given I, n, S. I V fW ' ' >+ T=T
Required p, a.

VII. Given a, p, Z. C pZ a _ log. Z log. a

Required n, S. c ~~p 1'
n==1 ~

logTp
*

VIII. Given a, Z, S. < S a log. Z log. a

Required p, n. (

"
S Z'

W
logTp

'

IX. Given a, p, S. < a-|-S(p 1) log. Z log. a

Required Z, n. c p
' 7l== ""

log. p
'

X. Given Z, p, S. 5 log. Z log. a
D j ) a=lp S(p 1), n=l-l 2 2

.

Required a, n. <
log. p

HARMONICAL PROGRESSION.

234. A series of quantities is called a harmonical progression when, if au_y
three consecutive terms be taken, the first is to the third as the difference of

the first and second to the difference of the second and third.

Thus, if a, 6, c, d be a series of quantities in harmonical progression,
we shall have

a:c::a b:b c; b:d::b c:c d, &c.

The reciprocals of a series of terms in harmonical progression are in arith-

metical progression.

Let a, b, c, d, e,f.... be a series in harmonical progression.

Then, by definition,

Also, the last term of the latter series, which will be

ln-\-qd,

will be the logarithm of the last term of the former series ;

.*. Hn-\-\}=ln-\-qd, .'. Z(n-j-l) ln=qd.

But by [B], ,LiP\

But, also,

Hence the differences of the logarithms are as the differences of the numbers.
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a:c::a 6:6 c; b:d::b c:c d; c:e::c d:d e, <Scc.

.. 06 ac=ac 6c, be bd=bd dc, cd ce=ce ed, &c.

ab ac ac be b.-. bd bd dc cd ce ce ed

abc abc abc abc
1

bed bed bed bed' cde cde cde cde"

or

I
1__1

1. ^ 1_1 1 1 1_1 1

c 6 6 a' d c c Ve d d c'

from which it appears that the quantities -, T, , -3, -. &c., are in arithmetical

progression.

To insert m harmonic means between a and 6.

Since the reciprocals of quantities in harmonical progression are in arith-

metical progression, let us insert m arithmetic means between - and
j.

Generally, in arithmetical progression,

l=a+ (n 1)6

i-!=l' n-r
1 1 a b

In this ease, Z=T, a=-, n=m-|-2, and .. 6=-,
,

.. ,.
6 a (m-j-l)afe

The arithmetic series will be

1 a-|-m6 2a-f(m 1)6 (m l)a-f-26 ma+6 1

Therefore the harmonical series will be

(m+ l)ab (m+l)ab (m+l)q6 (m+l)a6
a+m6

"
i

"2a+(/Ji 1)6
+ +

(m l)a+26
+ ma+6 +

INTEREST AND ANNUITIES.

235. THE solution of all questions connected with interest and annuities

may be greatly facilitated by the employment of the algebraical formulae.

In treating of this subject we may employ the following notation :

Letp dollars denote the principal.

r the interest of $1 for one year,

t the interest ofp dollars for t years.

s the amount ofp dollars for t years at the rate of interest denoted

by r.

t the number of years that p is put out at interest.

SIMPLE INTEREST.

PROBLEM I. To find the interest of a sum pfor t years at the rate r.

Since the interest of one dollar for one year is r, the interest ofp dollars for

one year must be p times as much, or pr ; and for t years t times as much as

for one year ; consequently,

i=Ptr (1)
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PROBLEM II. Tofind the amount of a sum p laid out for t years at simple
interest at the rate r.

The amount must evidently be equal to the principal, together with the in-

terest upon that principal for the given time.

Hence s=p -\-j>tr

(2)

EXAMPLE I.

Required the interest of $873.75 for 2| years at 4f per cent, per annum.

It will be convenient to reduce broken periods of time to decimals of a year.

By the formula (1) we have

i=ptr.
In the example before us,

p ....... =$873.75
r ..... . . =$.0475*
t =2^ years ....... =2.5 years.

.-. i=873.75x 2.5 X -0475 dollars.

=$103.7578125.

The amount of the above sum at the end of the given time will be

s=p -\-ptr

=$873.75+$103.757.

PRESENT VALUE AND DISCOUNT AT SIMPLE INTEREST.

The present value of any sum s due t years hence is the principal which in

the time t will amount to s.

The discount upon any sum due t years hence is the difference between that

sum and its present value.

PROBLEM III. To find the present value of s dollars due t years hence,

simple interest being calculated at the rate r.

By formula (2) we find the amount of a sum p at the end of t years to be

s=p -\-ptr.

Consequently, p will represent the present value of the sum s due t years

hence, and we shall have

for the expression required.

* r is the interest of $1 for one year. To find the value ofr when interest is calculated

at the rate of $4$ or $4.75 per cent, per annum, we have the following proportion :

$100:$l::$4.75:r

.-.r=$ =$0.0475.
100

In like manner,
When the rate of interest per cent, is $7, then r=$0.07.
When the rate of interest per cent, is 6, then r= 0.06.

When the rate of interest per cent, is 5, then r= 0.05.

When the rate of interest per cent, is 4}, then r= 0.0475.

When the rate of interest per cent, is 4 J, then r= 0.045.

When the rate of interest per cent, is 4$, then r= 0.0425
When the rate of interest per cent, is 4, then r= 0.04.

When the rate of interest per cent, is 3j,thenr= 0.0375.

*C- 4c. &c.
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Required the present vaiae of 100 dollars, payable in 10 years, at 7 per cent.

per annum.

In this example s= 100

t= 10

r=.07
100

PROBLEM IV. To find the discount on s dollars due t years hence, at the

rate r, simple interest.

Since the discount on s is the difference between s and its present value, we
shall have

s
d=s

1+ tr

str

(4)~l+tr
EXAMPLE.

Required the discount on 8100, due 3 months hence, interest being calcu-

lated at the rate of 5 per cent, per annum.

Here s =$100
t= 3 months = .25 years.

.-. d=

r= =$.05.
100 X -25 X-05

1+ .25X-05
1.25

71.0125
=1.235 dis.

ANNUITIES AT SIMPLE INTEREST.

PROBLEM V. To find the amount which must be paid at the end oft years,

for the enjoyment of an annuity a, simple interest being allowed at the rate r.

At die end of the first year the annuity a will be due ; at the end of the

second year a second payment a will become due, together with ar the in-

terest for one year upon the first payment ; at the end of the third year a

third payment a becomes due, together with 2ar the interest for one year
upon the former two payments, and so on ; the sum of all these will be the

amount required.

Thus:
At the end of the first year, the sum due is a.

At the end of the second year, the sum due is a+ar.
At the end of the third year, the sum due is o+2r.
At the end of the fourth year, the sum due is a+3ar.

&c. &c. &c.

At the end of the f* year, the sum due is <?+ (/ l)ar
Hence, adding these all together for the whole amount,

Or, taking the expression for the sum of the arithmetical series, 1+2+3
+ ......... (t-l)
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PROBLEM VI. Tofind the present value of an annuity apayablefor t years,

simple interest being allowed at the rate r.

It is manifest that the present value of the annuity must be a sum such that,

if put out at interest for t years at the rate r, its amount at the end of that

period will be the same with the amount of the annuity.

Hence, if we call this present value p, we shall have, by Problems I. and V.,

p-\-ptr= amount of annuity.

=to+ra.-T_

te+ra .fc

ta

COMPOUND INTEREST.

PROBLEM VII. To find the amount of a sum p laid out for t years, com-

pound interest being allowed at the rate r.

At the end of the first year the amount will be, by Problem II.,

p+pr, orp(l+ r).

Since compound interest is allowed, this sum p(l-\-r) now becomes the

principal, and hence, at the end of the second year, the amount will be

p(l-{-r), together with the interest onp(l-\-r) for one year; that is, it will be

The sum jf(l+ r
)

z must now be considered as the principal, and hence the

whole amount, at the end of the third year, will be

p(l+r)*+pr(l+r)*, orp(l+ r)*.

And, in like manner, at the end of the fh year, we shall have

=p(l+r)' .......... (7)

Any three of the four quantities, s, p, r, t, being given, the fourth may al-

ways be found from the above equation.

EXAMPLE I.

Find the amount of $15.50 for 9 years, compound interest being allowed

at the rate of 3 per cent, per annum, the interest payable at the end of

each year.

By equation (7),

.-. log. s= \og.p+t log. (1+r).
But j?=$15.50

t=9 years

r=$.035

Hog. (1+r)= 0.1344627

.-. log. 5=1.3247944= log. of 21.12481

.-. s=$21.12481.

*
It is unnecessary to give any examples under this rule, as the purchase of annuities

at simple interest can never be of practical utility.
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EXAMPLE II.

Find the amount of 182 12s. 6d. for 18 years, 6 months, and 10 days, at

the rate of 3^ per cent, per annum, compound interest, the interest being

payable at the end of each year.

In this case, it will be convenient, first, to find the amount at compound in-

terest of the above sum for 18 years, and then calculate the interest on the

result for the remaining period.

By formula (7),

log. s=Iog. p+t log. (1+r)
Here ^?=cl82. 12s. 6c2. ==182.625

r= =,.035
t= =13 years

.-. log. ^=2.2615602
<log. (1-fr) =0.2689254

.-. log. 5=2.5304856= log. of 339.224.

Again, to find the interest on this sum for the short period, we have

isssgfr

.-. log. i= log. s+ log. t'+ log r.

Here s= d339.224

r=6e.035

t'=6 months, 10 days= .527402 years
.-. log. 5=2.5304856

log. r=2.5440680

log. V=1.7221 401

.-. log. s t'r= 0.7966937= log. of 6.2617200

.-. s*'r=c6.26172.

The whole amount required will, therefore, be

s+si'r=c339.224+c6.26172
=c345 9s. 8^.

EXAMPLE III.

Required the compound interest upon S410 for 2~ years at 4i per cent, per
annum, the interest being payable half yearly.

In this case the time t must be calculated in halfyears ; and, since we have

supposed r to be the interest of 1 for one year, we must substitute -, which

will be the interest of $1 for half a year ; the formula (7) will thus become

'

.-. log.s=

Here jp=%
r=$.045
2i=5 half years

.-.log.^=2.6127839
5 log. 1.0225=0.0483165

.-. log.s=2.6611004=log. of 458.2471

.-.*=!5458.2471.

T
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The interest must be the difference between this amount and the original

principal ;

.-.is p
=$458.247 $410

=$48.247.

EXAMPLE IV.

$400 was put out at compound interest, and at the end of 9 years amounted

to $569.333 ; required the rate of interest per cent.

Here s, p, t are given, and r is sought.

From formula

we have
log.(l-fr)=y(log.s log.p).

Here s= $569.3333

2>=$400
t=9 years=

.-.log. s=2.7553666_log.p=2.6020600

..log.s log.p= .1533066

.1533066

= .0170340

=log. of 1.04

.-. r= .04=4 per cent.

EXAMPLE V.

In what time will a sum of money double itself, allowing 4 per cent, com-

pound interest ?

Here s, p, r are given, and t is sought.

From the formula (7) we have

S=p(
But here s=2p

lo- 2-

_.3010300=
.0170333

=17.673 years
= 17 years, 8 months, 2 days.

In like manner, if it be required to find in what time a sum will triple itself

at the same rate, we have

log- 3

""log. 1.04

_.4771213=
.0170333

=28.011 years
=28 years, months, 3 days.
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PRESENT VALUE AND DISCOUNT AT COMPOUND INTEREST.

If we call p the present value of a sum s due t years hence, and d its dis-

count, reasoning precisely in the same manner as in the case of simple inter-

est, we shall find

ANNUITIES AT COMPOUND INTEREST.

PROBLEM VIII. To find the amount ofan annuity a continuedfor t years,

compound interest being allowed at tJie rate r.

At the end of the first year the annuity a will become due ; at the end of

the second year a second payment a will become due, together with the in

terest of the first payment a for one year, that is, ar ; the whole sum upon
which interest must now be computed is thus, 2a-\-ar.

At the end of the third year a further payment a becomes due, together with

the interest on 2a-|-ar, i. e., 2ar-|-r
2

; the whole sum upon which interest

must now be computed is 3a-{-3ar-\-ar*. The result will appear* evident

when exhibited under the following form :

Whole amount at the end of first year, =c.
Whole amount at the end of second year, =a-\-a-\-ar

Whole amount at the end of third year, =a+ a-j-a(l-j-r)-f-ctr-|-ar(l-f-r)

Whole amount at the end of fourth year, -=a-\-a -\- a(l+ r) -f- a(l-\-r)'-\- ar

<kc. &c. &c.

Whole amount at the end of t
h
year, =a-|-a(l+r)-L-a(l-L-r)3

-j-a(l-j-r)
;j

Hence the whole amount is, in terms of the sum of a geometric progression

PROBLEM IX. To find the present value of an annuity a payable for t

years, compound interest being allowed at the rate r.

It is manifest that the present value of this annuity must be a sum such,

that if put out at interest for t years at the rate r, its amount at the end of that

period will be the same as the amount of the annuity.

Hence, if we call this present value p, we shall have, by Probs. VII. and

VIII..

p(l -{-/)'= amount of annuity

p= -
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EXAMPLE.

What is the present value of an annuity of $500, to last for 40 years, com-

pound interest being allowed at the rate of 2| per cent, per annum.

By formula (11),

Here

r=$.025
t =40 years;

... (14-7-)'= (1.025)*.
Now

log. (1.025)
40=40 log. 1.025

=40 X .0107239

= .4289560

= log. 2.685072

.-. (1.025)=2.685072=(l+r)
Also,

a 500

1.685072

=20000 X -62757. ..

=12551.40 dollars.

REVERSION OF ANNUITIES.

PROBLEM X. To find the present value (P) ofan annuity & which is to com-

mence after T years, and to continue for t years.

The present value required is manifestly the present value of a for T-\-t

years, minus the present value of a for T years.

a
By Problem IX., the present value of a for T+ 2 years =- /-, , x

a
By Problem IX., the present value of a for T years =- ..

.

PURCHASE OF ESTATES.

PROBLEM XI. Tofind Hie present value p ofan estate, or perpetuity, wtwse

annual rental is a, compound interest being calculated at the rate r.

The present value of an annuity a, to continue for t years, by Prob. IX., is

but if the annuity last forever, as in the case of an estate, then <=oo, and

: r,=_=0 ; hence, in the present case,-- oo

P=" ................. (13) .
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EXAMPLE.

What is the value of an estate whose rental is 1000, allowing the pur-

chaser 5 per cent, for his mone*y ?

Here

a=1000
r=$.05

1000
'

?=^5
= 20000, or 20 years' purchase.

REVERSION OF PERPETUITIES.

PROBLEM XII. Tofind the present value of an estate, or perpetuity, whose

annual rental is a dollars, to a person to whom it will revert after T years,

compound interest being allowed at the rate r.

By Problem X., the present value of an annuity, to commence after T years.

and to continue for t years, is

In the present case, =co , and .-. (l-j-r)~^
T+t)=0; hence we shall have

EXAMPLES FOR PRACTICE.

(1) Find the interest of 555 for 2| years at 4| per cent, simple interest.

Ans. 65.906.

(2) In what time will the interest of 1 amount to 75 cents, allowing 4| per
cent, simple interest ?

Ans. 16 years, 8 months.

(3) What is the amount of 120.50 for 2i years at 4 per cent, simple in-

terest ?

Ans. 134.809.

(4) The interest of d25 for 3J years, at simple interest, was found to be

3 185. 9d. ; required the rate per cent, per annum.

Ans. 4^.

(5) Find the discount on 66100 due at the end of 3 months, interest being

calculated at the rate of 5 per cent, per annum.

Ans. d61 45. 8^d

(6) What is the present value of the compound interest of d6lOO to be re-

ceived five years hence at 5 per cent, per annum ?

Ans. 6678 7s. Qd.

(7) What is the amount of <721 for 21 years at 4 per cent, per annum

compound interest?

Ans. 6fil642 195. 9\d

(3) The rate of interest being 5 per cent., in what number of years, at com-

pound interest, wDl 1 amount to 100 ?

Ans. 94 years, 141.4 days.

(9) Find the present value of d6430, due nine months hence, discount being
allowed at 4^ per cent, per annum.

Ans. d415 19s. ~2^d.
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(10) Find the amount of $1000 for 1 year at 5 per cent, per annum, com-

pound interest, the interest being payable daily.
Ans. $1051.288. nearly.

(11) What sum ought to be given for the lease of an estate for 20 years, of

the clear annual rental of clOO, in order that the purchaser may make 8 per
cent, of his money ?

Ans. <981 16s. 3%d.

(12) Find the present value of c20, to be paid at the end of every five years,

forever, interest being calculated at 5 per cent.

Ans. <72 7*. 3\d.

Q.3) What is the present value of an annuity of <20, to continue forever,

and to commence after two years, interest being calculated at 5 per cent. ?

Ans. ,362 16s. ^d.

(14) The present value of a freehold estate of clOO per annum, subject to

the payment of a certain sum (A) at the end of every two years, is .1000,

allowing 5 per cent, compound interest. Find the sum (A).

Ans. A =.102 10s.

(15) What is the present value of an annuity of 79 4s., to commence 7

years hence and continue forever, interest being calculated at the rate of 4|

per cent. ?

Ans. .1293 5s. lUd-

INTERPOLATION.

236. THIS name is applied to the process of finding intermediate numbers

between those given in tables.

Tables are generally calculated from an algebraic formula in which there

are two variable quantities, the one of which is called a function of the other,

the latter being usually called the argument of the function.

Thus, logarithms are functions of the numbers to which they belong, the

numbers being the arguments. Several formulas expressing the relation be-

tween a number and its logarithm have been seen by the student, and will

serve to exemplify the formulas in general of which we are now speaking.

The substitution of successive numbers for the argument, the calculating of

the corresponding values of the function, and writing the results in a table, is

called tabulating the formula.

If the formulas which have been derived under our articles upon intcrrst

and annuities should be tabulated, they would furnish what are called interest

tables.

The function frequently depends upon two arguments, as in the formula

for simple interest,

i=ptr '. . . (1)

Here the function is i, the interest, and the arguments are, p the principal, and

r the rate. This requires a table of double entry, the usual form of which is

a table in several columns occupying the whole width of the page, the argu-
ments being placed, the successive values of the one in a horizontal line at the

heads of the columns, and of the other in a vertical line at the side of the page,

the corresponding values of the function being placed in the column under on

of its arguments, and on the horizontal line of the other. The formula (1)
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above may employ a table of triple entry, the three arguments being the prin-

cipal, the rate, and the time. Such a table is formed by giving a whole page
to the argument of rate, the side and top being occupied by the arguments of

principal and time.

Where the differences of the functions are proportional to the differences

of their arguments, then the interpolation is made by simply solving a pro-

portion, the first two terms of which are the difference of the tabulated func-

tions and the difference of their arguments ; the third term being the diifer-

ence between one of the tabulated arguments and that whose function is to

be interpolated ; the fourth, or unknown, term of this proportion will be the

interpolated function required. This is called the method by first differences,

and has been exemplified in taking out logarithms of large numbers not found

exactly in the tables.

When the differences of the functions are not nearly proportional to the

differences of the arguments, as in the case of the logarithms of small numbers,
the method of interpolation above described would not be sufficiently accurate.

The nature of the variation of the function, as the argument varies in value, is

made sensible by taking the difference between each two of three consecutive

functions in the table, and comparing the difference between the first and sec-

ond with the difference between the second and third. If these differences

are the same, we have seen, in the note to (Art. 233), that the method of first

differences already explained applies ; but if they are not, their difference,

which is called a second difference, will, by its magnitude, indicate the degree
of inaccuracy of the method of first differences. This exposition will serve to

exhibit, in a general way, the nature and office of second differences. We
proceed to give a more analytic development of the use of second, third, <5cc.,

differences, the latter holding the same relation to the second differences that

these do to the first.

Letf and f-\-
S

l represent two consecutive functions in the table, 6
l being

their first difference. The next consecutive function, if the first differences

were constant, would be expressed byf-\-26 t ; but as they are supposed not

to be, it must be expressed by the form/4-2<5i-}-(5 2 ,
cJ 2 being the second dif-

ference, or difference between the two first differences, <5, and <5
l+ <52 - The

scheme below will show the form of the successive functions :

da +<53

3d Differ- 4th Dif-

bm

[ so on ; from which we perceive that the coefficients are the same as in the

expansion of a binomial, that of the second term being the number of the con-

secutive function after the first function. Denoting this number by n, we
have for the general form of the nth function after the first,

n(n-l), . n(n-l)(n-2),
,+ +<>* .... [CJ1.2 ai 1.2.3

Suppose, now, that a value of the function intermediate between the first and

second of the series in the table be required, n here, instead of being an entire

number, is a fraction. If the value of the function be required, corresponding
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to a value of the argument midway between its consecutive values in the tab!*

becomes equal to -. If the arguments of the tables differ by 24 hours, and

3 1
the function be required for 3 hours, n becomes equal to , or -. If the tabu

lar arguments differ by 1 hour, or GO minutes, and the function be required for

15 1
an argument 15 minutes beyond an even hour, n= =-.

60 4

EXAMPLE.

Given the logs, of 15, 16, 17, 18, 19, to find that of 17.25.

Arg-.orNo.
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A (1)

A+Bn-f-Cna
-fDn3+,<kc (2)

A+B.2n+C(2;i)-+D(2n)
3
-f,&c (3)

A+B.3n+ C(3n)
3
+D(3n)

3+,&c (4)

&c.

Subtracting successively (1) from (2), (2) from (3), kc., and representing

the remainders by P', Q', R', <kc., and dividing by n, we have

P'
,&c (5)

Ttt

=B+ C.5n+Dl9n3+, &c.
n
<kc. <fcc.

Again, subtracting successively (5) from (6), (6) from (7), &c., and repre-

senting the remainders by P", Q", &c., and dividing by 2n, we get

P"=C+D.3n+,&c.............. (8)

c.............. (9)

&c. &c.

Next, subtracting (8) from (9), &c., and representing the remainders by P'",

&c., and dividing by 3n, we have

"'=Q/
~P/

; also Q"=But P"'=; also Q"= and P"= ;

<&/l *

(R'-Q')-(Q'-P')
271*

Putting <5
3 for the numerator of this fraction, we have by (10),

D=
"37

==
6n3

'

Substituting this value of D in (8), and transposing, there results

Q' P'
But P"=-- , and putting 63 for Q' P', we obtain

r_^L_A
~2n : 2ns

"

Again, substituting these values of D and C in (5), and transposing, we hare

R_^' ^,^_^.
~n 2"l"2n 6a'

or, putting 6
l
for P', and simplifying,

<J, <J, <53
p>__1__2 I _JL

~n 2"r 3w'

Finally, substituting these values of the coefficients B, C, D ... in the as

sunied equation, we obtain

m . 1
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as the formula for interpolation, which coincides with the one obtained before,

$11 ^a ^3 being the first, second, and third differences of the functions, as is

evident from the manner in which they have been assumed above.

Let us apply it to a table in the Nautical Almanac, which gives the moon's

ktitude at noon and midnight for every day in the year.

EXAMPLE.

Let it be required to find the moon's latitude for August 4, 1842, at 16 18

mean time at Greenwich, that is, at 4.3 hours after midnight.

Moon's Latitude.
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i

The truth of tliis proposition is evident from what has been said with refer-

ence to equations.

This principle enables us. as in equations, to transpose any term from one

member of an inequation to the other by changing its sign.

Thus, from the inequation

a*4- fe>363 2a9 ,

we deduce

<z-+2a
2 >3i- 62

,

or

II. Ifwe add together the corresponding members of two or more inequations

which hold good in the same sense, the resulting inequation will always hold

good in the same sense as the original individual inequations ; that is, if

a>6, c>d, c>/,
then

a+c+e>6+^+/.
III. But ifwe subtract the corresponding members of two or more inequations

which hold good in the same sense, the resulting inequation WILL NOT ALWAYS
hold good in the same sense as the original inequations.

Take the inequations 4<7, 2<3, we have still 4 2<7 3, or 2<4.
But take 9<10 and 6<8, the result is 9 6> (not <) 108, or 3>2.
We must, therefore, avoid as much as possible making nse of a transforma-

tion of this nature, unless we can assure ourselves of the sense in which the

resulting inequality will subsist.

IV. If we, multiply or divide the two members ofan inequation by a positive

quantity, the resulting inequation will hold good in the same sense as the original

inequation. Thus, if

a b

a<^b, then ma<mi, <m m

a> b, then na> nb, -> -.
n n

This principle wifl enable us to clear an inequation of fractions.

Thus, if we have

a y c8 rf
3

2d ^
3a

'

multiplying both members by Sad, it becomes

3a(a
2

6)>2J(c
3

d-).

But,

V. If we multiply or divide the two members of an inequation by a negative

quantity, the resulting inequation will hold in a sense opposite to that of the

original inequation.

Thus, if we take the inequation 8>7, multiplying both members by 3,

we have the opposite inequation, 24 < 21.

87 8^7 *

Similarly, 8>7, but ^3<^3' or ~3<~3"
VI. We can not change the signs of both members ofan inequation unless we

reverse the sense of the inequation, for this transformation is manifestly the same

thing as multiplying both members by 1.
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VII. If both members of an inequation be positive numbers, we can raise them

to any power without altering Hie sense of the inequation ; that is, if

a~^>b, then an
^>b

n
.

Thus, from 5>3 we have (5)
2
>(3)

s
, or 25>9.

So, also, from (a+6)>c, we have (a+ &)
2>c2

.

But,

VIII. If both members of an inequation be not positive numbers, we can not

letermine, a priori, the sense in which the resulting inequation will hold good,

inless the power to which they are raised be of an uneven degree.

Thus, 2<3 gives ( 2)
2< (3)

2
,
or 4<9;

But, 3> 5 gives ( 3)
2 <( 5)

2
, or 9<25;

Again, 3> 5 gives ( 3)
3>( 5)

3
, or 27> 125.

In like manner,
IX. We can extract any root of both members of an inequation without alter-

ing the sense of the inequation ; that is, if

a^>b, then y <z^> \b.

If the root be of an even degree, both members of the inequation must

necessarily be positive, otherwise we should be obliged to introduce imaginary

quantities, which can not be compared with each other.

EXAMPLES IN INEQUATIONS.

(1) The double of a number, diminished by 6, is greater than 24 ; and triple

the number, diminished by 6, is less than double the number increased by 10.

Required a number which will fulfill the conditions.

Let x represent a number fulfilling the conditions of the question ; then, in

the language of inequations, we have

2x 6>24, and 3.r 6<2z+10.
From the former of these inequations we have

2z>30, or .r>15;

and from the latter we get

3.T 2z<10+6, orz<16;
therefore 15 and 16 are the limits, and any number between these limits will

satisfy the conditions of the question. Thus, if we take the number 15-9, we

nave

15-9X2 6>24 by 1-8,

while 15-9X3 6 <15-9X 2+10 by 0-1.

5 4
/0\ Q r O^T-
I.J *^ 5

.-. 30r 20>25z 8

30.r 25z>20 8

5.r>12

X>y.
3) 43 5z<10 8ar.

Ans. ;r< 11.

7 5
/ A\ ^ s^ Q. _Oi
V / *

""
j

1** ^v" ~~ **

Ans. x< .
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12
In the second example, , or 2|, is an inferior limit of the values of a:.

go
In the J;hird, 11, and, in the fourth, -^-,

or 9|, are superior limits of the
y

value of x. If the second and fourth of the above inequalities must be verified

simultaneously by the values of x, these values must be comprised between

2 and 9. If the third and fourth, it is sufficient that it be less than 11.

Finally, there is no value which will verify at the same time the 2 and 3.

(5) 3z 2y>5, 5z-j-3y>16;
16 3

We can attribute to y any value whatever, and for each arbitrary value of

y we can give to x all the values greater than the greatest of the two quan-
tities

16 3y

We determine, also, from the proposed inequalities,

3z 5 16 5z

y<-^->y>3--
In order that these last two may be fulfilled,

3z 5 16 5z

47
Thus x can receive only values superior to , or 2^, and for each value

A7

of x there should be admitted for y but values comprised between the two
limits above.

(6) z+4z>12
.-. :i?+4z+4>16

r>2, or 2.

The inferior limit dfx is -f- 2.

(7) zs
+7a:<30.

Ans. z<3 or 10.

The superior limit of z is 10.

p
(8) Reduce zn>zn - to its most simple form.

Ans, T>j>4' 1 '

pn-r+l

(9) Reduce z>^- to its most simple form.

Ans. z>l+ Vp-
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GENERAL THEORY OF EQUATIONS.

THE NATURE AND COMPOSITION OF EQUATIONS.

238. The valuable improvements recently made in the process for the de-

termination of the roots of equations of all degrees, render it indispensably

necessary to present to the student a view of the present state of this interest-

ing department of analytical investigation. The beautiful theorem of M. Sturm

for the complete separation of the real and imaginary roots, and for discover-

ing their initial figures, combined with the admirable method of continuous

approximation as improved by Horner, has given afresh impulse to this branch

of scientific research, entirely changed the state of the subject, and completed

the theory and numerical solution of equations of all degrees.

We recapitulate here two or three

DEFINITIONS.

1 . An equation is an algebraical expression of equality between two quan-

tities.

2. A root of an equation is that number, or quantity, which, when substi-

tuted for the unknown quantity in the equation, verifies that equation.

3. A- function of a quantity is any expression involving that quantity; thus,

ax~+b
ax^A-b, ax*-4-cx-4-d,

-
; ?, a* are all functions of x : and also ax2 6u2

,

cx-{-d_ --

^4x 5y, -5 pp, 2/

2
+2/ar+x

2
-j-a

2
4-i+2, are all functions of x and y.

ixr Zy
These functions are usually written/(z), and/(x, y).

4. To express that two members of an equation are identical or true for

every value of a:, the sign nz is sometimes used.

PROPOSITION I.

Anyfunction ofx, of the form

when divided by x a, will leave a remainder, which is the same function o/"a

that the given polynomial is ofx.

"Letf(x)=x-}-px
n~l

-{-qx
u
-*-\- ..... ; and, dividing/(r) by x a, let Q de-

note the quotient thus obtained, and R the remainder which does not involve

x ; hence, by the nature of division, we have

Now this equation must be true for every value of x, because its truth de-

pends upon a principle of division which is independent of the particular values

of the letters; hence, if x=a, we have

*/(a)=0+R;

and, therefore, the remainder R is the same function of a that the proposed

polynomial is of x.

EXAMPLES.

(1) What is the remainder of z2
6.r-f-7, divided by a: 2, without actually

performing the operation ?

* The student will recollect that fix) stands for xn
+px

n~ l

+, Ac., and that, therefore,

j\a) will stand for <?-\-pa
n~ l

-\-qcP~*-}-, dec.
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(2) What is the remainder of x3 61-4-8x 19, divided by z+3 ?

(3) What is the remainder of rl

+6.c
3
-|-7:t

2
+5:r 4, divided by z 5 ?

(4) What is the remainder of 3?-\-px*+qx-\-r, divided by xa I

ANSWERS.

(1) R=2 6x2+7= 1.

(2) R=( 3)
3

6( 3)*+8( 3) 19= 1124.

(3) 1571.

(4)

PROPOSITION II.

If&is the root of the equation,

the first member of the equation is divisible by x a.

If the division be performed, the remainder, according to the preceding

proposition, must be of the form

i. e., the same function of a that the first member of the proposed equation is

of x ; and, therefore, since a is a root of the equation, the remainder vanishes,

and the polynomial, or first member of the equation, is divisible exactly by
x a.

Conversely, if the first member of an equation f(x)=0 be divisible by x a,

then a is a root of the equation.

For, by the foregoing demonstration, the final remainder is f(a) ; but since

f(x), or the first member of the equation, is divisible by x a, the remainder

must vanish ; hence f(a)=0 ; and therefore, a being substituted for x in the

equation /(z)=0, verifies the equation, and, consequently, a is a root of the

equation.
.

PROPOSITION III.

239. The proposition that every equation has a root, has in most treatises

on Algebra been taken for granted. It has, however, of late years been

thought to require a demonstration, and we add one which is as brief and clear

as any of the best modifications of that by Cauchy.
As it will prove a little tedious, the student may, if he please to admit the

proposition, pass on to Prop. IV.

It win be necessary to premise a few lemmas relating to the properties of

moduli, some of which have been already demonstrated (Art. 197), but we re-

peat them here for convenience of reference.

LEMMA I. The sum or difference of any two quantities whatever has a

modulus comprehended between the sum and difference of the moduli of the

two quantities.

LEMMA II. The modulus ofa product of two factors is equal to the product

of their moduli.

Corollary. Hence the product of the moduli of any number of factors is

the modulus of their product, and the modulus of the 71
th
power of a quantity

is the nth
power of its modulus.

LEMMA III. In order that a quantity of the form a-|-b / 1 may be zero,

it is necessary, and it is sufficient, that its modulus should be zero : for a and

b being real quantities, let
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a-j-6-/ 1= 0.

As the real part a can not destroy the imaginary part b V 1, we must

have separately a=0 and 6= .-. t/a
2
-\-b

z=0.
LEMMA IV. Let there be a polynomial of the form

X= m
px

m~ l

qx
m-*. . . u,

in which the coefficients of all the terms after the first are essentially nega-

tive. A value of x can always be found sufficiently great to render the first

term xm greater than all the others together, and, consequently, the expression

X essentially positive, and as great as we please.

For we can write X thus,

in which, if x be supposed to increase indefinitely, the negative terms in

the parenthesis will decrease indefinitely. As soon as x has attained a value

/I sufficiently great to make these negative terms together equal to 1, the

value of the expression X will go on increasing indefinitely, and be always

positive.

If ? be taken negatively instead of positively, X will still be positive, provided

? be even ; but if m be odd, then, when A is put for x, the leading term will

be negative, and, consequently, X negative.

Corollary. If the first termp of a series p-+-qx+rx*+, &c., be constant,

x may be taken a sufficiently small fraction to make the sign of the whole de-

pend on that of the first term.*

* From the above it may be shown, that in every equation of an odd degree two values

can always be fouud, which, when separately substituted for the unknown quantity, will

furnish two results with opposite signs, and that in every equation of an even degree

two such values can also be assigned, whenever the final term or absolute number is

negative ; for, in this case, the substitution of zero for x will give a negative result, viz.,

the absolute number itself, and the substitution of -f-/l or "k will give a positive result.

From these inferences it may be proved, without difficulty, that every equation of an

odd degree, without exception, has a? real root, and every equation of an even degree, pro-

vided its final term be negative, has two real roots, the one positive, the other negative.

This conclusion might be deduced immediately from what has just been established, if it

be conceded that every polynomial/^), which gives results of opposite signs when two

values a, b are successively given to x, passes from/(a) to/(i) continuously through all in-

termediate values, as x passes continuously from a to b. But this is a principle that re-

quires demonstration. We proceed to establish it with the necessary rigor.

PROPOSITION.

If in the polynomial

f(x)=x
n+Aa_l

xn
- 1

.... +A,a#+A,a+N
x be supposed to vary continuously from x=a to x=b, then the function f(x) will vary

continuously from /(a) tof(b).

DEMONSTRATION.

Let of be any value intermediate between a and b. Substitute af-\-h for x in the poly

nomial, and it will become

that is, actually developing, in the second member, by the binomial theorem, and arranging

the results according to the ascending powers of h,
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FRELI3HNART DEMONSTRATION.

240. Each of the equations

has a root of the form a+b v/ 1. This is true of the equation a^rr+ l,

whether m be even or odd, since x=l always satisfies it. It is also true of

the equation xta= 1 when m is odd, for then r= 1 satisfies it.

When m is even, it must either be some power of 2, or else some power

of 2 multiplied by an odd number ; if it be a power of 2 t then the value of x

will be obtained after the extraction of the square root repeated as many times

in succession as there are units in the said power. Now the square root of

the form a-j-6 / 1 is always of the same form (Art. 118). Hence, when

m is a power of 2, each of the equations xm= 1, x= V 1 has a root

of the form announced. When 7/1 is a power of 2 multiplied by an odd num-

ber, then, if we extract the root of this odd degree first, there will remain to

be extracted only a succession of square roots.

We have, therefore, merely to show that, when m is odd, a root of i V 1

is of the predicted form.

Now the odd powers, 1, 3, 5, &c., of -{- V 1 are (Art. 66)

and the same powers of \/ 1 are

-V^i. + V^i, -v^i....

consequently, when m is odd, a root of i V 1 is either -{ V 1 <>r

V 1. Hence the predicted form occurs, whether m be odd or even.

It follows from this proposition that, whatever positive whole number m
i _ i_

may be, ( l)
m and

( / l)
m will always be of the form +&/ 1 ; or,

more generally, ( l)
m and ( -/ l)

m will always be of this form, n and m be-

ing any integers positive or negative (Cor. to Lemma II.).

THEOREM.

241. Every algebraical equation, of whatever degree, has a root of the form

f(af-\-h)=a'
a

+na!

+N
which may be written

h

+(rt\)(

Now, by what has been above shown, a value so small may b given to h that the sum
of the terms after/(o

/

) shall be less than any assignable quantity, however small Hence,
whatever intermediate value of between a and b be fixed upon for x mf(x], in proceeding
to a neighboring value, by the addition to a' of a quantity h ever so minute, we obtain for

f(t?-\-h) a like minute increase of the preceding valuef(a
r

).
In other words, in proceed-

ing continuously from a to i in our substitutions for x, the results of those substitutions

must be, in like manner, continuous, or all connected together without any unoccupied in-

terval.

u
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!> whether the coefficients of the equation be all real, or any of

thern imaginary and of the same form.

Let/(.c)=z
1'+An_1xn-1+...A 3 .rJ+A 2^-|-A 1x+N=0 ...... (1)

represent any equation the coefficients of which are either real or imaginary.
If in this equation we substitute p-\-q V I for x, p and q being real, the

first member will furnish a result of the form P-j-QV 1, P and Q being

real (Lemma II.). Should p-\-q^/ 1 be a root of the equation, this result

must be zero ; or, which is the same thing, the modulus ofP+Q / 1, viz.,

A/l'--f-Q
2
, must be zero (Lemma III.). And we have now to prove that

values ofp and q always exist that will fulfill this Litter condition.

In order to this, it will be sufficient to show that whatever value of

z, greater than zero, arises from any proposed values of p and q,

other values of p and q necessarily exist, for which VP 2+Qa becomes still

smaller, so that the smallest value of which -v/P
2
-|-Q

2
is capable must be zero,

and the particular expression p-j-gV 1> whence this value has arisen, must

be a root of the equation.

For the purpose of examining the effect upon any function, f(x), of changes

introduced into the value of x, the development exhibited at Art. 239, Note, is

very convenient. By changing x into x-\-h, the altered value of the function is

thus expressed by

/i
2 h?

f(x+h)=f(x)+fl (x)h+f2(x)+fs (x) 273...*-
........ (2)

where /(.T) is the original polynomial, and/i(ar),/2 (ar), &c., contain none but

integral and positive powers of x (Ai't. 239, Note).

The first of these functions, /(.r), becomes P-f-QV 1 when p+qV 1

is substituted for x ; the other functions may some of them vanish for the

same substitution, for aught we know to the contrary ;
but all the terms after

f(x) can not vanish ; the last hn
, which does not contain x, must necessarily

remain.

Without assuming any hypothesis as to what terms of f(x-}-h) vanish for

the value x=p-\-q^/ 1, which causes the first of those terms, /(.r), to be

come P+QV 1, let us represent by hm the least power of h for which the

coefficient does not vanish when p-^qV 1 is Put f r x- This coefficient

will be of the form R+S / 1) in which R and S can not both be zero.

1 is put fora:, we have represented /(x) by P-j-Q"/ 1-

In like manner, when p-\-q^J l-\-h is put for x, we may represent the

function by P'+Q' V ! The development (2) will then be

1= (P+QV 1)+(R+SV l)h
m+ terms

h'+ l

, 7r+2
,
.... ha

.

Now h is quite arbitrary ; we may give to it any sign and any value we

please, provided only it come under the general form a-\-b V 1- Leaving

the absolute value still arbitrary, we may therefore replace it by either -\-k
i

or 7t, or rL( l)
mk ; and thus render hm either positive or negative, which-

^
ever we please, whatever be the value of TO; and we have seen that

( l)
m

comes within the stipulated form (Art. 240). Hence we may write the fore-

going development thus, the sign of km being under our own control :
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1=(P+QV l)+(R-t-S V l)k
m+ terms in

km+l

, km+2
, .... ka

.

But in any equation of this kind the real terms in one member are together

equal to those in the other, and the imaginary terms in one to the imaginary
terms in the other. Consequently,

P /=P+Rytm
4- the real terms in A"*1

, k*+*, . . . . jfe ;

Q'=Q+S ni

-|- real terms involving powers above k.
Hence the square of the modulus of P'-j-Q'-v

7 1 is

P'2+Q'==P i+Qa+2(PR+QS);i-+ real terms in k"*1
,

ni+3
, . . i2".

Now k may be taken so small that the sum of all the terms after P3+Q*
may take the same sign as 2(PR-f-QS)&

m
by (239), which sign we can always

render negative whatever PR-f-QS may be, because, as observed above, Jf

may be made either positive or negative, as we please.

Hence we can always render

In other words, whatever values of p and q, in the expression p-\- q -\/ 1,

cause the modulus -\fP--\-Q3 to exceed zero, other values exist for which the

modulus will become smaller ; and, consequently, one case at least must exist

for which the modulus, and, consequently, the expression P+QV 1 must

become zero.

This conclusion presumes, however, that PR-f-QS is not zero. If such

should be the case, then our having chosen the form of A, so as to secure a com-

mand over the sin of 2(PR+QS), will have been unnecessary. The form

must then be so chosen that a command may be secured over the sign of the

first term after 2(PR-f-QS)fr
m

, in the above series, for P^+Q'3
, which does

not vanish, when the preceding conclusion will follow.

242. The values of a and b in the expression a-f-6 / 1, which, when put
for x in/(x), cause that polynomial to vanish, can never be infinite.

We may write f(x) as follows, viz.,

A,,-, A_ N\

or, putting P-f-Q-/ 1 foa what/(x) becomes, when p+q-\/ 1 is substi-

tuted for x, we have

P+QV^I=
A n_i An_2 N

Now the modulus of a quotient is the quotient of the modulus of the divi-

dend by the modulus of the divisor (Lemma II.). In each of the dividends

. A _s, &c., above, the modulus is finite by hypothesis. Hence, if either

or q be infinite, and, consequently, the modulus of every denominator or

divisor also infinite, the modulus of each quotient must be zero. Hence, in

this case, each of the above fractions must itself be zero (Lemma III.), and

therefore the modulus of the entire quantity within the parenthesis simply 1 ;

and the modulus of a product is the product of the moduli of the factors, so

that the modulus of the preceding product, viz.. -/P--J-Q*, is the modulus of

!)" But the n* power of p+qV 1 has for modulus the T>"*

wer ofthe modulus 0^+ qV 1, that is, the rc
th
power of -Jp--\-q~ (Lemma
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II., Cor.), which is infinite; consequently, VP 2+Q2 must be infinite. But

1 is a root of the equation /(z)=0, -v/P
2+Q2

is zero. Hence,
in this case, neither p nor q can be infinite.

243. An objection may be brought against the preceding reasoning that

ought not to be concealed. It may be denied that the modulus of the product

above referred to is simply the modulus of (p-\-q V l)
n in the case ofp or q

infinite ; for it may be maintained that although in this case all the quantities

within the parenthesis after the 1 become zero, yet the combination of these

with (p-\-q V l)
n

j which involves infinite quantities, may produce quantities

also infinite ; and thus the modulus of the product may differ from the modu-

lus of (p-\-q v l)
n
by a quantity infinitely great. It is not to be denied that

there is weight in this objection. But it is not difficult to see that although

the true modulus may thus differ from the modulus of (p-+-qV 1)" by an

infinite quantity, yet the modulus of (p-^-qV l)
n

involving higher powers
than enter into 'the part neglected, is infinitely greater than that part. This

part, therefore, is justly regarded as nothing in comparison to the part pre-

served, the former standing in relation to the latter as a finite quantity to in-

finity.

But the proposition may be established somewhat differently, as follows :

Substituting (p -\-q-\f 1) for x in/(.r), we have

Call the aggregate of all these terms after the first P'+Q' V 1
?
then it

is plain that the modulus of the first term, that is, ( v
/P2+ (?")"'

must infinitely

exceed the modulus -/P' 3+Q'a of the remaining terms whenever p or q is

infinite, because in this latter modulus so high a power of the infinite quantity

p or q can not enter as enters into the former. Now the modulus of the

whole expression, that is, of the sum of (p^.q^/ l)
n and P'+Q'-V/ 1> is

not less than the difference of the moduli of these quantities themselves

(Lemma I.),
which difference is infinite. Hence, as before, VP 2+QJ must

be infinite when p or q is infinite.

PROPOSITION IV.

244. Every equation containing but one unknown quantity has as many roots

as there are units in the highest power of the unknown quantity.

Let/(a:)= be an equation of the /i
th
degree ;

then if a, be a root of this

equation, we have, by Proposition II.,

(,r-a,)/1 (.r)=/(.r)= ....... (1)

where /, (x) represents the quotient arising from the division of/(x) by x a lf

and will be a polynomial, arranged according to the powers of X, one degree
lower than the given polynomial /(a-). The equation (1) may be satisfied by

making either x a,=0, .r=a,, or by making /,(z)=0. But/,(a-)=0 must

have a root, as a 2 (see Prop. III., large edition) ../,() must be divisible by'

xa a , .-./,(:r)=(:r a 2 )f2 (x).

Substituting this value of/,(ar) in (1), it becomes

(x-a l )(x-a 2)fa(x)=f(x)= 0.

Proceeding in this manner, if a 3 , 4 , a 3J
..... a,, are roots of the successive
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factors/.,(.r)=0,/3(z)=0 /B(o.-)=0, the degree of the quotient reducing

by one each time, the equation will assume the form

(x a ,)(j- a 2 )(x a 3 ) (x On)=0 ;

and, consequently, there are as many roots as factors, that is, as units in the

highest power of x, the unknown quantity ; for the last equation will be veri-

fied by any one of the n conditions,

z=ai, z=a2, z=</ 3 , x=a 4 , z=an ;

and since the equation, being of the nth
degree, contains n of these factors of

the 1st degree, (x a,), j&c., there are n roots.

Corollary 1. When one root of an equation is known, the depressed equa-
tion containing the remaining roots is readily found by synthetic division.

Corollary 2. The number of factors of the 2 degree in an equation is n(n 1
)

-i-1 . 2 ;
of the 3, n(n l)(n 2)-^-l .2.3, and so OB (see Art. 203).

EXAMPLES.

(1) One root of the equation x* 25zJ+ 60z 36=0 is 3 ; find the equation

containing the remaining roots.

1 -f 25 +6036 (3

3-|-9 48+36
1 +3 _16 +12.

Hence tf+Sx
3 16z+12=0

is the equation containing the remaining roots.

(2) Two roots of the equation x* 12z3+48z3 6&r+15=0 are 3 and 5 ;

find the quadratic containing the remaining roots.

1 _12 +4868+15 (3

3 _27+ 63 15

19 +21 5 (5

5 op 5

14+1
.-. x3 4z+l=0

is the equation containing the two remaining roots.

(3) One root of the cubic equation x3 6x3+llx 6=0 is 1; find the

quadratic containing the other roots. Ans. x* 5r+6=0.
(4) Two roots of the biquadratic equation 4x* 14x 5j2+31r+6=0 are

2 and 3; find the reduced equation. Ans. 4z2+6z+l=0.
(5) One root of the cubic equation r'+Sx

1 16z+12=0 is 1 ; find the re-

maining roots. Ans. 2 and 6.

(6) Two roots of the biquadratic equation x4

6z*+24z 16=0 are 2 and

2 : find the other two roots. Ans. 3i V^-

PROPOSITION v.

245. Toform the equation whose roots are a n a 2 , a3 , a 4 , an.

The polynomial,/(j-), which constitutes the first member of the equation

required, being equal to the continued product of x a lt x a a , x a 3 , . . .

x an , by the last proposition, we have

* There can be no other factor of the form (x a) which will divide fx, for, if there

were, it must divide some one of the factors (x aj, (x aj, &c. (See note, p. 83.)
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(x ai)(ar a.2 )(x a 3 ) (x a n)=0;
and by performing the multiplication here indicated, we have, when

X
J {Zj6Z2 ^^U

z4=0, and so on.

n=3, r5

a3

a*

By continuing the multiplication to the last, the equation will be found

whose roots are those proposed ; and from what has been done we learn that

(1) The coefficient of the second term in the resulting polynomial will be

the sum of all the roots with their signs changed.

(2) The coefficient of the third term will be the sum of the products of

every two roots with their signs changed.

(3) The coefficient of the fourth term will be the sum of the products of

every three roots' with their signs changed.

(4) The coefficient of the fifth term will be the sum of the products of

every four roots with their signs changed, and so on
; the last or absolute

term being the product of all the roots with their signs changed.*

*
I. The generality of this law may be proved as follows : Let us suppose it to hold

good for the product of n binomial factors, we shall prove that it will for the product of

-f-l of these. Let
,

xn A^-'+A^"-
2

, &c., -l-An

represent the product of n binomial factors, in which A
L represents the sum a

1 -f- 2-|-an

-)-, &c., + of the n second terms of the binomials, A,3 the sum of their products two and

two, A3 the sum of their products three and three, and so on, and An the product of all the

n second terms a
}
a.2
a
3, &.C., an .

Introduce now a new factor (x n+1 ). Performing the multiplication of the above poJv-

noroial by this new factor,

xn A^-t+Ayx"-' , &c., -i-An

1

-, &c., ^-ADx

x"-1

-, &c.

A,
Here the coefficient of the second term is composed of A

, the sum of all tho

n+i

second terms of the n binomials (x a,), (x a
3), &c., and a

a+l , the second term of tin:

(-{-l)
th

binomial, and is, therefore, equal to the sum of the second terms of the ra-f-1 bino-

_J_A
mials. The coefficient of ,the third term is composed of A,,, the snm of the prod-

+Ai n+l

ucts of the n second terms two and two, and Aja^j, the sum of the n second terms, each
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Corollary 1. If the coefficient of the second term in any equation be 0,

that is, if the second term be absent, the sum of the positive roots is equal to

the sum of the negative roots.

Corollary 2. If the signs of the terms of the equation be all positive, the

roots wifl be all negative, and if the signs be alternately positive and negative.

the roots will be all positive.

Corollary 3. Every root of an equation is a divisor of the last or absolute

term.

-irA,2
multiplied by the new second term an+1 ; hence will be the sum of the products+A i

fl&fi
of the n-{-l second terms two and two-

The last term Anan+1 is the product ofA , which is the product of all the n second terms

multiplied by the new second term an+1,
so that A^a^, t

is the product of all the K-f-1 sec-

ond terms.

We have thus proved that if the law for the formation of the coefficients above stated

hold good for a certain number of binomial factors n, it will hold good for one more, or n-\-\.

We have seen, by experiment, that it holds good for four, it therefore holds good for five ;

if for five, it must for six, and so on ad infinitum.

II. One might imagine, at first view, that the above relations would make known the

roots. They give at once equations into which these roots enter, and which are equal in

number to the coefficients of the equation (excepting the coefficient of the first term, which

is unity). The number of these coefficients is equal to the number of the roots of the equa-
tion. Unfortunately, when we seek to resolve these secondary equations, we are led to the

very equation proposed, so that no progress is made.

For simplicity, I will take the equation of the S3 degree.

*3+Px2+Or+a=0 ............. (1)

Designating the three roots by a, b, c, we have, to determine the roots, the three re-

lations

P=al c

d=:ab+ac+bc ................. (2)

R= abe

To deduce from them an equation which contains but the unknown a, the most simple
mode of proceeding is, to multiply the 1 by a3, the 2 by a, and add them to the 3.
There results

abc.

Reducing, and transposing the term a3, we have

The unknown quantities b and c are tbus eliminated, but the equation resulting is of the

same degree with the proposed. From the symmetrical form of the relations (2) we per-

ceive that the elimination of a and b, or a and c, would have been attended with similar

consequences.

HI. To find the sum of the squares of the roots of any equation.

= sum of the squares -j-SA, ;

.-. sum of squares =Aj* 2A4
.

To find the sum of die reciprocals of the roots.

{ l)~
1AB_l

=6c ... l+ac ... l+ab ../+.

( l)
nAB=oic.../;
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Corollary 4. In any equation, when the roots are all real, and the last or

absolute term very small compared with the coefficients of the other terms,

then will the roots of such an equation be also very small.

EXAMPLES.

(1) Form the equation whose roots are 2, 3, 5, and 6

Here we have simply to perform the multiplication indicated in the equa-
tion

(z-2)(x3)(x-5)(x+6)= ,

and this is best done by detached coefficients in the following manner :

1_ o (_ 3

3+6
1 5+ 6 (5
_ 5+2530
110+3130 (6

6 60+186180
1_ 429+ 156 180

.-. a* 4r* 29x2+156z 180= is the equation sought.

(2) Form the equation whose roots are 1, 2, and 3.

(3) Form the equation whose roots are 3, 4, 2+ -\/3, and 2 -\/3.

(4) Form the equation whose roots are 3+ t/5, 3 -\/5, and 6.

ANSWERS.

(2) .T
3 7z+6=0.

(3) ** 3.^15^+49.rl 2= 0.

(4) 332*+ 24=0.

PROPOSITION VI.

246. No equation whose coefficients are all integers, and that of the highest

power of the unknown quantity unity, can have a fractional root.

If possible, let the equation

.r
n+An_1

.T
n-I

-j
---- +A 3 :r

3+A 2 .T
2+A 1.r+N=0,

whose coefficients are all integral, have a fractional root, expressed in its low-

est terms by T. If we substitute this for x, and multiply the resulting equation

by b"~l
, we shall have

In this polynomial, every term after the first is integral ; hence the first term

a fl"

must be integral also. But r being a fraction in its lowest terms,
-j-

must also

be a fraction in its lowest terms, and can not be an integral. (See Note to

Art. 84.) Therefore the proposed equation can not have a fractional root.

PROPOSITION VII.

247. If the signs of the alternate terms in an equation be changed, the signs

of all the roots will be changed.
Let Tn+A 1x

n- 1+A2rn
-s+ ..... An_,:r+A n=0 .... (1)

be an equation ; then, changing the signs of the alternate terms, we have

x"-A 1x
n-1+ A 3x-^- ..... AD_,a:+An=0 ... (2)

or -xn+AiXn-1

Ajx'-^ ..... =pAn_,:rAn=0 ... (3)
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But equations (2) and (3) are identical, for the sum of the positive terms in

each is equal to the sum of the negative terms, and therefore they are identi-

cal. Now if a be a root of equation (1), and if a be substituted for x in equa-

tion (1) and a in equation (

-

2), if n be an even number, or in equation (3)

if n be an odd number, the results will be the very same ; and since the for-

mer is verified by such substitution, a being a root, the latter, viz., equation

(2) or (3), as the case may be, is also verified, and therefore a is a root of

the identical equations (2) and (3).

Corollary. If the signs of all the terms are changed, the signs of the roots

remain unchanged.

EXAMPLES.

(1) The roots of the equation r 6x2-f-llr 6=0 are*l, 2, 3. What are

the roots of the equation r'-f6x+llx-f6=0 ?

Ans. 1, 2, 3.

(2) The roots of the equation x* 63?+ 24r 16=0 are 2, 2, 3i -Jo.

Express the equation whose roots are 2, 2, 3-f- V&i and 3 -\/5.

Ans.

PROPOSITION VIII.

248. Surds and impossible roots enter equations by pairs,

Let in
-j-AiT

&~1+A i:
xn~2

4- A ft_iZ-j-An=0 be an equation having a root

of the form a-j-^V 1 then will a b \/ 1 be also a root of the equation ;

for, let a -}- b \/ 1 be substituted for x in the equation, and we have

Now, by expanding the several terms of this equation, we shall have a series

of monomials, all of which will be real except the odd powers of b V 1,

which will be imaginary. Let P represent the sum of the real and Q \/ 1

the sum of the imaginary terms of the expanded equation ; then

an equation which can exist only when P=0 and Q=0, for the imaginary
quantities can not cancel the real ones, but the real must cancel one another,
and the imaginary one another separately.

Again, let a b -\/ 1 be substituted for z in the proposed equation ; then

the only difference in the expanded result wifl be in the signs of the odd powers
of b V 1, and the collected monomials, by the previous notation, will assume
the form P Q-/ 1 but we have seen that P=0 and Q=0;

and hence a b \/ 1 also verifies the equation, and is therefore a root

Such roots are called conjugate.
In a similar manner, it is proved that if a-j- Vb be one root of an equation,

a /& W 'U also be a root of that equation.

Corollary 1. An equation which has impossible roots is divisible by

jz (a-j-6-/ IHI* (a~ & V' 1)1. or zs 2z-
i ' J { * )

and. therefore, every equation may be resolved into rational factors, simple or

quadratic.

Corollary 2. Ah1

the roots of an equation of an even degree may be impos-
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sible, but if they are not all impossible, the equation must have at least two
real roots.

Corollary 3. The product of every pair, of impossible roots being of the

form as
-4-6

3 is positive; and, therefore, the absolute term of an equation
whose roots are all impossible must be positive.

Corollary 4. Every equation of an odd degree has at least one real root,

and if there be but one, that root must necessarily have a contrary sign to

that of the last term.

Corollary 5. Every equation of an even degree whose last term is nega-
tive has at least two real roots, and if there be but two, the one is positive,

and the other negative.

PROPOSITION IX.

249. The m roots of the equation X=0, or

x+Pz'-+Qarm-a+, fee, =0 ...... [A]

must be of the form a-{-b y* 1, of which form we have already shown (Art.

241) that it must have one.

For, let a-\-b y* 1 be the root whose existence is demonstrated. We
know (Prop. II.) that the polynomial

m
-|- , &c., is divisible by a: (a-\-b ^/ 1);

but when we effect this division, the quantities a-J-iy* 1, P, Q, &c., can

combine only by addition, by subtraction, and by multiplication ; then tho co-

efficients of the quotient xm~l

-{-, &c., will still be of the form a-j-i-/ 1.

Consequently, the equation xm~1

-\-^ &c., will also have at least one root of the

form a'-\-b' y" 1 dividing x
m~l

-{-, &c., by a: (a
1

-\-b' V 1)> the coefficients

of the quotient xm~2
-j-, &c., will be still of the same form. Continuing to

reason thus, it is evident that the primitive polynomial X will be divided into

m factors of the form x (a-\-b y* 1), and, consequently, the roots of the

equation will all be of the form a-\-b y* 1.

PROPOSITION x.

250. The roots of the two conjugate equations,

Y+Z/=1=0 ................ (1)

Y Zy* 1=0 ........... ..... (2)

will be conjugates of each other.

Leta:=a-|-&y' 1 be a root of equation (1), and Y'-f-Z'y* 1 the quotient

of its first member, by x a b y* 1, we have the identity

(Y'+ Z'-vA^l)^ i/^ij^Y+Z/Hl. ...... (3)

Effecting the multiplication in the 1 member, we find

(x a)Y'+6Z'+[(x a)Z' 6Y'] -/^l

Changing now in the two factors Z' into Z', and b into 6, we see that

in the product the part which does not contain y 1 remains the same, and

that that which does contain y* 1 only changes its sign ; by virtue of (3),

therefore, we have

(Y' Z'J~i)(x a+6/=l)=Y Zy^ (4)

From whence we conclude that a & y* 1 is a root of (2) ; that is, all the roots

of (2) are obtained by changing in those of (1) the sign of y* 1. The real

roots, according to this, must bo the same in the two equations.
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We may now consider the following beautiful proposition as demonstrated

from the foregoing.

PROPOSITION XI.

An algebraic equation which has real coefficients is always composed of a$

many real factors of the 1 degree as it has real roots, and of as many real

factors of the 2 degree as it has pairs ofimaginary roots.

DEPRESSION OR ELEVATION OF ROOTS OF EClUATIOXS.

PROPOSITION.

251. To transform an equation into another whose roots shall be the roots of
the proposed equation increased or diminished by any giren quantity.

Let oxn -
r-A1xn

-1

-f-A2z
ll~5-

r
- ..... A _ 1:t-f-An=0, he an equation, and let it

be required to transform it into an equation whose roots shall be the roots of

this equation diminished by r.

This transformation might be effected by substituting y-\-r for x in the pro-

posed equation, and the resulting equation in y would be that required ; but

this operation is generally very tedious, and we must therefore have recourse

to some more simple mode of forming the transformed equation. If we write

y-\-r for x in the proposed equation, it will obviously be an equation of the

very same dimensions, and its form will evidently be

ay"+K ly-l+E.2y*-*+ .....B D_1y+Bn=0 . t . . . (1)*

in which B t , B 3 , &c., wiD be polynomials involving r. But y=x r, and there-

fore (1) becomes

a(z-r)"+B 1(z-r)"-
l+ .....B^ar-rJ+B^O . .

(2)

which, when developed, must be identical with the proposed equation; for,

since y-\-r was substituted for x in the proposed, and then x r for y in (1),

the transformed equation, we must necessarily have reverted to the original

equation ; hence we have

*
It will be of the same form with the development in the note to (Art. 239). We eive

it again below, arranged according to the powers of r instead of y. After substituting y-\-r
for x, we write the development of each term of the proposed equation in a horizontal line ;

the first horizontal line is the development of or", the second ofA t.r ', and so on.

-fAo.

in which the first column is of the same form as the proposed equation ; the second

column, or coefficient of r, is derived from the first by multiplying the coefficient of each

term by its exponent, and diminishing the exponent by unity ; the third column, or coeffi-

t*
rient of , is derived from the second in a similar manner, and so on.

If we designate byf(x) the first member of the given equation, and by/'(z) the first de-

rived function, by/"(x) the second derived, and so on, we shall have

, AC.
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Now, if we divide the first member by x r, every term will evidently be divis-

ible, except the last, B n , which will be the remainder, and the quotient will be

and since tne second member is identical with the first, the very same quotient
and remainder would arise by dividing this second member also by x r ;

hence it appears that if the first member of the original equation be divided by
x r, the remainder will be the last or absolute term of the sought transformed

equation.

Again, if we divide the quotient thus obtained, viz.,

by x r, the remainder will obviously be B n_i, the coefficient of the term last

but one in the transformed equation ; and thus, by successive divisions of the

polynomial in the first member of the proposed equation by x r, we shall ob-

tain the whole of the coefficients of the required equation.

RULE.

Let the polynomial in the first member of the proposed equation be a func-

tion of x, and r the quantity by which the roots of the equation are to be di-

minished or increased ; then divide the proposed polynomial by x r, or x-}-r,

according as the roots of the proposed equation are to be diminished or in-

creased, and the quotient thus obtained by the same divisor, giving a second

quotient, which divide by the same divisor, and so on till the division termi-

nates ; then will the coefficients of the transformed equation, beginning with

the highest power of the unknown quantity, be the coefficient of the highest

power of the unknown quantity in the proposed equation, and the several re-

mainders arising from the successive divisions taken in a reverse order, the

first remainder being the last or absolute term in the required transformed

equation.

Note. When there is an absent term in the equation, its place must be

supplied with a cipher.

EXAMPLES.

(1) Transform the equation 5-t
4 12.ri

-4-3.r
2
-|-4a: 5=0 into another whose

roots shall be less than those of the proposed equation by 2.

i2) 5Z4
12.r>-f 3x

2
-f \x 5 (Sr"

5 23? z+2
5-r4 lOx3

2x3+43?
x2+4x

2x 5

2x 4

1. First remainder,

x 2) Sx3 2x x+2 (5x
s+8x+15

8xs x

8x8 16.r

15x+ 2

15x 30

32. Second remainder.
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x 2) 5^4-8^4-15 (o.r+18
5J3 IQx

18x4-15
18x 36

51. Third remainder.

x-2) 5*4-18 (5

5x 10

28. Fourth remainder.

Therefore the transformed equation is

This laborious operation can be avoided by Homer's Synthetic Method of

division, and its great superiority over the usual method will be at once ap-

parent by comparing the subsequent elegant process with the work above.

Taking the same example, and writing the modified or changed term of the

divisor x 2 on the right hand instead of the left, the whole of the work will

be thus arranged :

1 12

10
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Now we know the equation whose roots are less by 1 than those of the

given equation : it is x*-\-3?-\-2x 2= ; and by a similar process for -7, re-

membering the localities of the decimals, we have the required equation ;

thus :

_i_2 2 (-7

.7 1-19 2-233

1-7 3-19 :233

7 1-68

2-4 4-87

7

3-1

_|_ 4-877/4- -233=0 is the required equation.

This latter operation can be continued from the former without arranging

the coefficients anew in a horizontal line, recourse being had to this second

operation merely to show the several steps in the transformation, and to point

out the equations at each step of the successive diminutions of the roots.

Combining these two operations, then, we have the subsequent arrange-

ment.

or

12
1
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(6) Give the equation whose roots shall be less by 10 than the roots of the

equation
4* 12340=-

(7) Give the equation whose roots shall be less by 2 than those of the

equation

i5_|_si
3 6x3 1Oz+ 8= 0.

(8) Give the equation whose roots shall each be less by \ than the roots of

the equation

AWSWERS.

................ whence z=y-f- 1

(5) y4_|_9y3_j_l.Oi/
2_14^=0 .............. whence x=y+ 3

andr* 7:3+66z 72=0 ............. whence x=z 1

(6) y4-42j/34-6632/
2
4-4664^=0 ........... whence z=^+10

(7) y5_|-lOy
4
+42i/

3
+863/

2
4-70?/+12=0 ...... whence Z=T/+ 2

(8) 2y*-2f 2^12/4-1=0 ............ whence x=y+ \

PROPOSITION

252. If the real roots of an equation, taken in the order of their magnitudes, be

a i, a2 , <z3 , a 4 , a s , ....
.^

...

where t^is the greatest, a3 the next, and so on ; then if a series of numbers,

in which b, is greater than a,, b3 a number between a t and &2 , b3 a number

between a 3 and a 3 , and so on, be substituted for x in the proposed equation,

the results will be alternately positive and negative.

The polynomial in the first member of the proposed equation is the product
of the simple factors

(x a^x a 2)(x a 3 )(x <z 4 )
......

and quadratic factors, involving the imaginary roots ; but the quadratic factors

bave always a positive value for every real value of x (Art. 248, Cor. 3) ; there-

fore we may omit these positive factors ; and substituting for x the proposed
series of values, 6^ b 2 , b 3 , &c., we have these results:

(&i-ai)(&i-a a)(&i-a 3)(*i-4) =+ + + + ..... =+
(6 3 -a,)(& 2-a 2 )(i> 2-a 3 )(6 2-a 4 )

.... =_.+.+.+ ..... =-
(6 3-a 1 )(fe 3-a 3 )(6 3

- <z 3)(6 3_a 4 )
.... =_._.+.+ ..... =+

(o A a 1 )(b A a2)(b A a 3 )(b 4 -a A )
.... =_.._.+ ..... =_

&c- &c. &c.

Corollary 1. If two numbers be successively substituted for x in any equa-

tion, and give results with different signs, then between these numbers there

must be one, three, Jive, or some odd number of roots.

Corollary 2. If the results of the substitution in corollary 1 are affected

with like signs, then between these numbers there must be two, four, or some

even number of roots, or no root between these numbers.

Corollary 3. If any quantity q, and every quantity greater than q, renders

the result positive, then q is greater than the greatest root of the equation.

Corollary 4. Hence, if the signs of the alternate terms be changed, and if

p, and every quantity greater than p, renders the result positive, then p is

less than the least root.
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EXAMPLE.

Find the initial figure in one of the roots of the equation

Here one value of x does not differ greatly from unity, for the value of the

given polynomial, when x=l, is 1, and when z=-9, it is found thus :

1_4_6 +8 (-9

92-797911

The value, therefore, when z=-9 is (Art. 251) -089. Hence the former

value being negative, and the latter positive, the initial figure of one root is -9.

PROPOSITION.

253. Given an equation of the n<" degree to determine another of the (n 1)'*

degree, such that the real roots of the former shall separate those of the latter.

Let a,, a*, a 3 , a 4 ,
. . . . an be the roots taken in order of the equation

3*+A 1
a:

I1-1+A a :r
I1-M An_i."c+An=0 ;

then diminishing the roots of this equation by r (Art. 251), we have the fol-

lowing process, viz. :

- ' '

1-
A 2 -f An_2+ An_,+ A n (r

rB, rB n_3 rB n_3 rB n_!

G; ~~C~2 !-* C n_x

Whence
Cn-^A,,-^ rBn_3+ r C n_3

=A n_!+ r(An_2+ r B n_3)+ r (An_, +r
=An_1+2r An^+2^ Bn_3 + ^ C n_3

Again, the roots of the transformed equation will evidently be

ajr, a2 r, az r, a4 r, .... an r,

and as we have found the coefficient, C,-, of the last term but one in the

transformed equation, by one process,
we shall now find the same coeff

C _; by another process (Prop. V., p. 309) ;
it is the product of every (n-]

roots of the equation (1) with their signs changed; hence we have

C^=(r- ai)(r-a2)(r-as)
to (n-1) factors

>

+ (r
_ ai)(r_a 2)(r-a4)

to (n-1) factors

+ (r-a1)(r-a3)(r-fl4)
to (

H-^ factors
I (2)

+ (
r'_as)(r'-a3)(r-a4)

to (n-1) factors

Now these two expressions which we have obtained for C.-! are equal to
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one another, and, therefore, whatever changes arise by substitution in the

one, the same changes will be produced, by a like substitution, in the other ;

nence, substituting aM a.: , a 3 , &c., successively for r in the second member of

equation (2), we have these results :

(a3 ai)(a3 a.2)(a3 a4)
...... = .+ ....... =+

&c. &c. &c.

But when a series of quantities, a^ <%, a3 , a4, &c., are substituted for the

unknown quantity in any equation, and give results which are alternately -j-

and , then, by Art. 252, these quantities, taken in order, are situated in the

successive intervals of the real roots of the proposed equation ; hence, making
Cn_i=0, and changing r into x, we have from equation (1)

nTn-i+ (
n_l)A 1xn

--+(n.-af^.2xn-'H----- 2AQ_2x+AD_1=0 ... (3)

an equation whose roots, therefore, separate those of the original equation

a-+A,a:
I1
- 1+ Aara-s+ ....An_i;r+An=0,

and the manner of deriving it from the proposed equation is to multiply each

term of the proposed equation by the exponent of x, and to diminish the ex-

ponent one. It is identical with the second column of the development in

the note to Article 251. It is known by the name of the derived equa-
tion.

Let flj, 0-2, a3, a4, &c., be the roots of the proposed equation, and 61, fcj, 83l .

&c., those of the derived equation (3), ranged in the order of magnitude ; then

the roots of both the given, and the derived equation will be represented in

order of magnitude by the following arrangement, viz. :

a
t , 61, a; , 62 , ay, &3, o4, 64, c5 , T>s, <fec. . .

Corollary 1. If a 2 =ai, then r a, wiD be found as a factor in each of the

groups of factors in equation (2), which has been shown to be the separating

equation (3), and, therefore, the separating equation and the original equation
will obviously have a common measure of the form x a L .

Corollary 2. If c3=a2=ai, then (r fli)(r Oj) will occur as a common
factor in each group offactors in (2) ; that is, the separating equation (3) is divis-

ible by (z Oi)"', and, therefore, the proposed equation and the separating equa-
tion have a common measure of the form (x a ; )-.

Corollary^. If the proposed equation have also a4=a3 , then it will have a

common measure with the separating equation of the form (x a^ (x a4),
and so on.

Scholium. When, therefore, we wish to ascertain whether a proposed

equation has equal roots, we must first find the separating equation, and then find

the greatest common measure of the polynomials constituting the first mem-
bers of these two equations. If the greatest common measure be of the form

(x a t )P (x a3)i (x a3)
r .....

then the proposed equation will have (/>+!) roots =tfi, (?+l) roots =03,
(r-j-1) roots =a3 , 6cc. The equation may then be depressed to another of

lower dimensions, by dividing it by the difference between x and the repeated
root raised to a power of the degree expressed by the number of times it is

repeated.

X
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KXAMFLES.

Find the equal roots of the equation
4=0 ...... (1)

The derived polynomial is

7x+30^+30^ 24Z3 45.r2 G.r+8 ......... (2)

and the common divisor of (1) and (2)

z*+3a-+a? 3x 2. .... ............... (3)

The values of x, found by putting this equal to zero, would be the repeated

roots of the proposed equation. This itself will be found to have equal roots,

for its derived is

4^+9x2+2x 3,

and their .common divisor

x+1.
Hence, by the rule, ^

(x+1)
2 .......... (4)

is a factor of (3), and

(z+l)
s

a factor of the proposed.

Dividing (3) by (4), the quotient is

aa+z-2,
which, put equal to zero, gives

a:=l, or 2.

Hence (3) may be put under the form

and by the rule in the above scholium the given equation may be put under

the form

(*+ 1)3 (*_!) (a:+2),
so that in the proposed equation there are three roots equal to 1, two to

-J-l, and two to 2.

(2)
x3 3a2T 2a3=0.

By the process above it may be transformed into

(i-t-a)
2
(x 2a)=0,

so that the three roots are two equal to a, and the third 2a.

(3) x8 12r7+53x6 92Z5 9x4+212.r
3 I53i-3 108:r+108=0

decomposes into

(xl) (x 2)
2
(.r+1)

2
(x 3)

3=0.

254. The most satisfactory and unfailing criterion for the determination of

the number of imaginary roots in any equation is furnished by the admirable

theorem of Sturm, which gives the precise number of real roots, and, conse-

quently, the exact number of imaginary ones, since both the real and imagi-

nary roots are together equal to the number denoted by the degree of the

proposed equation.

PROPOSITION.

To find the number of real and imaginary roots in any proposed equation.

The acknowledged difficulty which has hitherto been experienced in the

important problem of the separation of the real and imaginary roots of any

proposed equation is now completely removed by the recent valuable re-q

searches of the celebrated Sturm
; and wo shall now give the demonstration

of the theorem by which this desirable object has been so fully accon;
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ed, nearly as given by the author himself, deeming it far more satisfactory than

any other version which we have seen.

THEOREM OF STURM.

I. Let Nxm+Pxm-1+Qj-n-a
4- .....+Tx+U=0

be a numerical equation of any degree whatever, of which it is proposed to

determine all the real roots.

We begin by performing upon this equation the operation which serves to de-

termine whether or not it has equal roots (Art. 253, Sch.), in a manner which

we proceed to point out. If V designate the entire function N^-j-Pi"1

-^*

<kc., and V 1 its derived function (which is formed by multiplying each term

of V by the exponent of x in this term, and diminishing that exponent by uni-

ty), we must seek for the greatest common divisor of the two polynomials V
and VV Divide, at first, V by Vj, and when a remainder is obtained of a

degree inferior to that of the divisor V 15 change the signs of all the terms of

this remainder (the signs + into and into -f-). Designate by V3 what
this remainder becomes after the change of signs. Divide in the same man-

ner Vi by V 2 , and, after having changed the signs of the remainder, it becomes
a new polynomial V3, of a degree inferior to that of Vg . The division of

V.2 by V 3 conducts, in the same manner, to a function V4 , which will be the

remainder resulting from this division after having changed the signs. This

series of divisions is to be continued, taking care to change the signs of the

terms of each remainder. This change of signs, which would be useless if

our object was to find the greatest common divisor of the polynomials V and

V,, is necessary in the theory about to be explained. As the degrees of the

successive remainders go on diminishing, we arrive finally either at a numeri-

cal remainder independent of x, and differing from zero, or at a remainder n

function of x, which exactly divides the preceding remainder.

We shall examine these two cases separately.

II. Suppose, in the first place, that, after a certain number of divisions, we
arrive at a numerical remainder, which may be represented by Vr.

In this case we know that the equation V=0 has no equal roots, since the

polynomials V and V t have no common divisor function of x. Representing by

Qi, Qj ---- Qr-n the quotients given by the successive divisions, which leave

for remainders V2, V3 .... V r, we have this series of equalities :

V =V1Q1_V3

(1)

Vrl3=V rJ1Qr_ 1-Vr .

Thus much being premised, the consideration of this system of functions

V. V lt V2 ----Vr furnishes a sure and easy means of knowing how many real

roots the equation V=0 has comprehended between two numbers A and B of

any magnitude or signs whatever, B being greater tJian A. The following is

the rule which attains this object :

Substitute in place of x the number A in all the functions V, V,, Y2 ____

^.!, V r, then write in order, in one line, the signs of the results, and count

the number of variations which are found in this succession of signs. Write,
in the same manner, the succes-ion of signs which these same functions take

by the substitution of the other number B, and count the number of variations
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which are found in this second succession. The number of variations which it

has less than the jirst will be the number of real roots of the equation V=
comprehended between the numbers A and B. If the second succession has as

many variations as the first, the equation V=0 has no real root between A
and B.

III. We shall demonstrate this theorem by examining how the number of

variations formed by the signs of the functions V, V z , V2 . . . V r, for any one

value whatever of x, can change, when x passes through different states of

magnitude.
Whatever may be the signs of these functions for one determinate value of

x, when x increases by insensible degrees to beyond this value, there can take

place no change of signs in this succession of signs, unless one of the functions,

V, V T
. . ., changes sign, and, consequently (155, note 3), becomes zero

There are then two cases to examine, according as the function which van-

ishes is the first, V, or some one of the other functions, V,, V 2 . . . V
r_,, in-

termediate between V and V r : the last, Vr , can not change sign, since it is a

number positive or negative.

IV. Let us see first what alteration the succession of signs experiences when

j, in increasing in a continuous manner, attains and passes by a value which

destroys the first function V. Designate this value by c. The function V,,

derived from V, can not be zero at the same time with V for rr=c, because

by the hypothesis the equation V= has not equal roots. We see, besides,

by the equations (1), without falling back upon the theory of equal roots, that

if the functions V and V l
were zero for x=c, all the other functions, V 2 , V-,

. . ., and, finally, V r , would be zero at the same time ; but, on the contrary, V r

is by hypothesis a number different from zero. V, has then for x=c a value

different from zero, positive or negative.

Let us consider values of x very little different from c. If in designating by
u a positive quantity as small as we please, we make by turns x=c u and

x=.c-\-u, the function V l will have for these two values of x the same sign

that it has for x=c ; because we can take u sufficiently small, to insure that V,
shall have for these two values of x the same sign that it has for x=c ; since

we can take u so small that V t will not vanish, and not change sign, while x

increases from the val\ie c u to c-{-u.*

We must now determine the sign of V for x=c-\-u. Designate for a mo-

ment V by/(.r), Vj by f'(x), and the other derived functions of V by_f"(x),

f'"(x) . . .,/
m
(.r),

which are not to be confounded with V 2 ,
V 3 , &c., these

latter not being derived functions. When we make x=c-\-u, V becomes

/(c+w), and we have (see note to Prop. III., Art. 239, or Art. 251)

or, rather, observing that/(c) is zero, and
that_/*'(c) is not,

We see from this expression off(c-\-u), that in attributing to u very small

* The delicate point on which the theorem hinges is the one stated here. Let it be dii-

tinctly seen that since V t can not be zero at the same time with V when xc, therefore^

however little c may differ from a value which reduces Vi to zero, u may be taken smaller

than this difference.
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positive values, f(c-\-u) will have the same sign as_/*'(c),* and, consequently,

J (<+") W 'M have also the same sign asf'(c-\-u), since/'(e-f-w) has the same

sign as/'(c). Thus, V has the same sign as V, for x=c-\-u.

By changing u into u in the preceding formula, we have

(c)-
f
-^u+, &c.]

And we perceive, in the same manner, that f(c u) has a sign contrary to

that of/'(c), from whence it follows that for x=c u the sign of V is contrary
to that of V,.

Then, if the sign of/'(c) or of V 1? for #=<, is + the sign of V will be -f-

for x=c-\-u, and for x=c u. If, on the contrary, the sign of V l is

for x=c, that ofV will be for X=C-|-M, and -\- for x=c . Besides, V l

has for x=c-\-u and for x=c u the same sign as it has for x=c.
These results are indicated in the foDowing table :

VV, VV,
fx=cu, --

1-, -j
--

,

For <x=c. +, or else ,

(z=c+ W , + +,

Thus, when the function V vanishes, the sign of V forms with the sign ot

V
,
a variation, before x attains the value c, which reduces V to zero, and this

variation is changed into a permanence after x passes this value.

As to the other functions, V 2 , V 3 , Arc., each will have, as V,, either for

x=.c-\-u or for x=.c u, the same sign that it has for x=c, that is, if none of

them vanish for x=c at the same time with V.
The succession of the signs of the functions V, V M V 3 ... Vr, loses then a

variation, when x, going on increasing, passes over a value c, which reduces

the first function V to zero without destroying any of the other functions, V,,
V 2 , &c. It is necessary now to examine what happens when one of these

functions vanishes.

V. Let there be a function, Vn , intermediate between V and V r, which is

destroyed when x becomes equal to b. This value of x can not reduce to zero

either the function Vn-i, which precedes immediately Vn , or the function

Vn+i, which follows V n . Indeed, we have between the three functions VB_I,
V... Vn+1 , the following equation, which is one of the equations (1).

V n_ 1
=VnQn-Vn+1 .

It proves that if the two consecutive functions, V n_i, V n , were zero for the
same value of x, V n_fj

would be zero at the same time ; and as we have also

we should have, again, Vtl+2=0, and so on, so that we should have finally

Vr=0, which is contrary to the hypothesis.

The two functions, V,,-, and Vn+1 , have then for x=b values different

from zero : moreover, these values are of contrary signs, because the same

equation,

v^=rV.Q,-VH*.
gives V a_!= V B+t, when we have Va=0.

* This depends upon a principle demonstrated at Art. 239, Cor., that if a function of u be

arranged according to the ascending powers of , ti may be taken ao small that the sign

of the whole function shall depend upon that of its first term.
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This being established, substitute in place of x two numbers, b u and L-\-u,

very little different from b ; the two functions, V n_, and Vn+1 , will have for

these two values of x the same signs as they have for x=b, since 'we can al-

Avays take u sufficiently small, to insure that neither Vn_i nor V,1+1 shall change

sign when x enlarges in the interval from b u to b-\-u. Whatever may be

the sign of V n for x:=b u, as it is placed in the succession of signs between

those of Vn_! and Vn-j-u which are contrary, the signs of these three consecu-

tive functions, Vn_!, V n , V,1+1 ,
for x=b , will form always either a perma-

nence followed by a variation, or a variation followed by a permanence, as is

seen in the following scheme

_! Vu Vn+1 V n_! Vn Vn+1

For x=b u + i , or else, i +
Similarly, the signs of the three functions, Vn_!, Vn , Vn+i, for x=b-\-u,

whatever may be that of Vn , will form one variation, and will form but one.

Besides, each of the other functions will have the same sign for x=b u

and x=b-^-u, provided no one of them is found to be zero for x=b at the

same time as Vn .

Consequently, the succession of the signs of all the functions, V, V, ... Vr ,

for x==b-{-u, will contain precisely as many variations as the succession of

their signs for x=b u. Thus, the number of variations in the succession of

signs is not changed when any intermediate function whatever passes through
zero.

One arrives evidently at the same conclusion, ifmany intermediate functions,

not consecutive, vanish for the same value of x. But if this value should de-

stroy also the first function, V, the change of sign of this one would then make

one variation disappear at the left of the succession of signs, as has been shown

in IV.

VI. It is then demonstrated that each time that the variable x, in increasing

by insensible degrees, attains and passes a value which renders V equal to

zero, the series of the signs of the functions V, V t , V 2 ... Vr loses a varia-

tion formed on its left by the signs of V and V,, which is replaced by a per-

manence, while the changes of signs of the intermediate functions, V,, V 2

.... V r_i, can never either augment or diminish the number of variations which

existed already. Consequently, if we take any number whatever, A, positive

or negative, and any other number whatever, B. greater than A, and if we
make x increase from A to B, as many values of x as are comprised between A
and B, which render V equal to zero, so many variations will the succession

of signs of the functions V, V t
... V r for :r=B contain less than the suc-

cession of their signs for .r=A. This was the theorem to be demonstrated.

REMARK. In the successive divisions which serve to form the functions V 2 ,

V 3 , &c., we can, before taking a polynomial for a dividend or divisor, multiply

or divide it by any positive number at pleasure. The functions V, V,, V a

.... V r , obtained by this operation, will differ only by positive numerical fac-

tors from those which we have previously considered, and which appear in

equations (1), so that they will have respectively the same signs as those for

each value of x.

With this modification we can, when the coefficients of the equation V=
are whole numbers, form polynomials V 2 ,

V3 , &c., the coefficients of which

shall be also entire. But it is necessary to take good care that the nun:

factors thus introduced or suppressed be all positive.
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VII. This theorem gives the means of knowing the whole number of real

roots of the equation V=0.
In fact, an entire polynomial function of x being given, we can always as-

sign to x such a positive value as that for this and .every greater value the

polynomial will have constantly the sign of !ts first term
(sea^Art. 239). It is

the same with all negative values of x below a certain limit. All the real roots

of the equation V=0 being comprised between CD and -J- 00 ? >' wi^ be suffi-

cient, in order to know their number, to substitute GO and -j- 30 instead of A
and B, in the functions V, V,, V,... Vr, and to note the two successions of

signs for GO and 4- as- When we make ar=-}- cc, each function is of the

same sign as its first term. For x= co, each function of an even degree, in-

eluding Vr, has the same sign that it has for z== -f- co ; but each function of an un-

even degree takes for x= co a contrary sign to that which it has for x=+ oo.

The excess of the number of variations formed by the signs of the functions V,
V ! . . . Vr, for x= cc , over the number of variations for x= -\- cc , wiH express

the whole number of real roots of the equation V=0.*
To determine the initial figures of the roots, we may substitute the suc-

cessive numbers of the series

0, -1, -2, -3, -4,
till we have as many variations as co produced; and if we substitute the

numbers of the series

* One might be curious to know how the succession of signs of the functions V, Vlt V9

...Vr must undergo change so as that a variation is lost every time that V vanishes.

We have seen (IV.) that if c is a root of the equation V=0, the two' functions V and

Vi must have contrary signs for x=c v, and the same sign for xc-\-ii. So that if we
designate by </ the root of the equation V=0, which is next greater than c, so that be-

tween c and </ there is no other root, Vi will have for x=c? u a sign contrary to that of

V. But V has constantly the same sign for all values of x comprised between c and cf ;

and as Vj has the same sign as V for x=c-\-u, and a contrary sign to that of V for x=cf

v, we see that V, has two values with contrary signs for x=c-f-M and for x=c? u ;

then, while x increases from c-\-u to d u, V, must change sign once, or an uneven num-
ber of times (I., or Prop, of Art. 252, Cor. 1).

Let y be the only value of x, or the least value of x between c and c', for which Vj
changes sign. V and Vj will have fbr x=y u the same common sign that they have for

x=c-\-u. For x=y-\-u V will have this same sign ; but V, will have the contrary sign.

V, will have a sign contrary to that ofV for the three values for y v, y, and y-\-u (V.). I

for example, V is positive for x=c-\-u, we have the following table :

vv,v,
For ar=7 u -f- -j

x=y +
x=y+u -]

Thus, before x attained the value c, which destroys V, the signs of V and V
1 formed a

variation which is changed into a permanence after x has overpassed this value c ; this

permanence subsists until Vi changes sign, then it is anew replaced by a variation after

ttfac change of sign of Vi ; but, at the same time, there is a variation formed by the signs

of \*i and V2 which changes into a permanence, so that the number of variations in the

total succession of signs is neither increased nor diminished.

IfV t changes sign a second time for a new value of x comprehended between e and </,

the variation which the signs of V and Vj form before x attains this value will be again

replaced by a permanence ;
and still, on account of V.: , the number of variations will re-

main the same in the succession of signs. As Vi can thus change sign only an uneven
number of times, after its last change the signs of V and Vj will form a variation which

will subsist until x attains the value cf, which destroys V. We have not to consider here

the case where V vanishes without changing sign.
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0, 1, 2, 3, 4,

till we arrive at a. cumber which produces as many variations as -j-

the numbers thus obtained will be the limits of the roots of the equation, and

the situation of the roots will be indicated by the signs arising from the sub-

stitution of the intermediate numbers.

We shall now apply the theorem to a few

EXAMPLES.

(1) Find the number and situation of the roots of the equation

Z3 _40.-8 6*4-8= 0.*

Here we have V = x3 4x2
6.C-J-8

V1= 3.r
2 8x 6;

then, multiplying the polynomial V by 3, in order to avoid fractions,

3za 8x 6) Sx3 12x2
18*4-24 (* 1

Sr3_ 8x" 6x

4z2
12.r4-24, multiply by ;

or 3*2
9.r+18

3*2
4- 8.r+ 6

17*4-12 .-. V2=17* 12

3*2 8.r 6

17

I7x 12) 51.r3 136.1- 102 (3*

51*2 36*

100* 102.

It is now unnecessary to continue the division further, since it is very ob-

vious that the sign of the remainder, which is independent of x, is
; and,

therefore, the series of functions are

V = r3 4*- 6*4-8
V1= 3.r2 8* 6

V2=17z 12

V3=+ .

Put -|-
00 and cc for x in the leading terms of these functions, and the

signs of the results are

* The process applied to the general cubic equation aP-\-aaft-\-bx-\-c=0, gives the fol-

lowing functions, viz. :

With tlie second term.

V = x

-fb

.i
(1)

Without the second term, or a=0.
V = afi+bx+c

V3= 43c+a262 l&abc-

These functions in (1) and (2) will frequently be found useful in the application of Sturm's

theorem to equations of the third degree, since the derived functions in any particular es*

ample may be found by substitution only. In order that all the roots of the e<]

aP-\-bx-\-c=0 may be real, the first terms of the functions must be positive;! hence 2&r

and 4#* 27c* must be positive ;
and as 27c2 is always negative, h must 1

in order that 4i3 and 2Z> may be positive ; therefore, when all the roots arc r,>;il, <i/s>

//As if. \i
must be greater than 27<fl, or

\-f greater than I -) . When, therefore, b is negative and

03
(c\

l*

>^-| ,
all the roots are real, a criterion which has been long known, and as simple as

can be given.
t See Art. 257.
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Foi r=-}-x, -J-+++ DO variation,

x= x,
( \-

three variations,

3 0=3, the number of real roots in tho proposed cubic equation.

Next, to find the situation of the roots we must employ narrower limits

than -j-oo and CD. Commencing at zero, let us extend the limits both ways.
VViVjVs Var. VViVa V 3 Var.

Forx=0 signs -| ^-

*=!.... + 4.
T= 2.

z=3.
x=4.
x=5....4-+ 4-4.

For -r= si^ns 4 (-"

3

We perceive, then, by the columns of variations, that the roots are between
and 1, 4 and 5, I and 2 ; hence the initial figures of the roots are 1,

0, and 4 ; and, in order to narrow still further the limits of the root between
and 1, we shall resume the substitutions for x in the series of functions as

before. But as the substitution of 1 for x, in the function V, gives a value

nearly zero, we shall commence with 1, and descend in the scale of tenths.

until we arrive at the first decimal figure of the root.

Let x= 1 signs
---

\--\- one variation,

x=-9 . . . .
-|
---

1- 4- two variations ;

hence the initial figures are 1, -9, and 4.

(2) Find the number and situation of the real roots of the equation

Here the several functions are

V = z*4- x3 x*

3 2x 2

r -6
V,=- x+1
V4=+ .

Let x= 4" ti signs of leading terms -j- -j- -|
---

(-
two variations

x= CD ............
-|
---h+ 4~ two variations ;

and all the roots of the equation are imaginary.

When, in seeking for the greatest common divisor of V and Vi5 we arrive

at a polynomial Vn (for example, at that of the second degree), which, put

equal to zero, will only give imaginary values of z, it is not necessary to carry

the divisions further, because this polynomial Vn will be constantly of the same

sign as its first term for all real values of x ; for if it gave a plus sign for one

value, and a minus for another, there must be a real root between.*

(3) Required the number and situation of the real roots of the equation
2z< lLr2

4-8:r 16= 0.

The first three functions are

V= 2x< llx-+8z 16

V,= 4^* 11*4-4
V3=llx2

12x4-32;
* This consideration is of importance, as the calculations for determining the functions

V
;

. Va are lonsr, especially toward the last, on account of the magnitude of their numerical

coefficients.
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and the roots of the quadratic llz2
12x4-32=0 are imaginary, for 11x32

X 4 is greater than 12 2
; hence V2 must preserve the same sign for every

value of x, and the subsequent functions can not change the number of varia-

tions, for a variation is only lost by the change of the sign of V. Hence,

For z=+ oo signs ++ + no variation,

x= QD . . .
-j
---

(-
two variations ;

and the proposed equation has two real roots, the one positive and the other

negative, since the last term is negative. (Prop. VIII., Cor. 5, p. 314.)

When x= signs
--

\- -j-
x= signs

--
1- +

x=\ -------
\-

x= 1 ----

x=2 ------ - x= 2 ----

Hence the initial figures of the real roots are 2 and 2.

When two roots are nearly equal to each oilier.

(4) Find the roots of the equation

:e3-fll;r
2

102.T+ 181=0.

The functions are

V= r'+lLr
2

102a:+181
V1= 3x*+22x 102

V2 =122;r 393

V3=+ ;

and the signs of the leading terms are all -J- ; hence the substitution of uc*

and -}- co must give three real roots.

To discover the situation of the roots, we make the substitutions

.r=0 which gives -|
----

j- two variations,

x=3 ....... -|
----

|- two variations,

a:=4 ....... -j- -|- -f- -j- no variation ;

he;;ce the two positive roots are between 3 and 4, and we must, therefore,

transform the several functions into others, in which x shall be diminished by
3. This is effected by Art. 251, p. 315 ;

and we get

V = 2/3+20^-97/4-1
V'1= 3i/

2
+40i/ 9

V'2=1227/ 27

.
V'3=+ .

Make the following substitutions in these functions, viz. :

y= signs -j
----

}-
two variations,

7/
= -l . . .+--+

y=-2 . . .
-\
----

j-
two variations,

y='3 . . . -j- -|" -{- -|~ no variation ;

"

hence the two positive roots are between 3-2 and 3-3, and we must, agait

transform the last functions into others, in which y shall be diminished by -2.

Effecting this transformation, we have

V" = 23+20-6z
2

-88z+-008
V",= 3zz

+41-2z -88

V"2=122z 2-6

V"3 =-\-.
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Let 2= tlieii signs are
-| \- two variations,

2=.01 -j (- two variations,

z=-02 \-
one valuation,

z=-03 -J- -}- -j- -{- no variation ;

hence we have 3-21 and 3-22 for the positive roots, and the sum of the roots

is 11 ; therefore, 11 3-21 3-22= 17-4 is the negative root

IVhen the equation has equal roots.

255- When the equation has equal roots, one of the divisors will divide tlie

preceding without a remainder, and the process will thus terminate without a

remainder, independent of x. In this case, the last divisor is a common meas-

ure of V and V^; and it has been shown (Art. 253, Scholium, p. 321) that if

(x a\)(x a..)
2 be the greatest common measure of V and V\, then V is di-

visible by (x (fi)
2
(x as )

3
, and the depressed equation furnishes the distinct

and separate roots of the equation, for Sturm's theorem takes no notice of

the repetition of a root. The several functions may be divided by the great-

est common measure so found, and the depressed functions employed for the

determination of the distinct roots ; but it is obvious that the original functions

will furnish the separate roots just as well as the depressed ones, for the for-

mer differ only from the latter in being multiplied by a common factor (29) ; and

whether the sign of this factor be -f- or , the number of variations of sign

must obviously remain unchanged, since multiplying or dividing by a positive

quantity does not affect the signs of the functions ; and if the factor or divisor

be negative, all the signs of the functions wiD be changed, and the number of

variations of sign will remain precisely as before.

Find the number and situation of the real roots of the equation

x5 7z*-f 13x3+z2
16z-|-4= 0.

By the usual process, we find

V = x5 T^+lSr'-f z* lG.r+4
V1== 5x* 26z3+39x2+2x 16

V2=llr5 48i3 51x +2
Vs= 3z- S.r+4
V4= x 2

V5=0.

Hence x 2 is a common measure of V and V"i ; and if

i= oo the signs are
j 1

four variations,

x= 2
1 1

four variations,

x= 1'
-j 1

ar= ....... -\ }--| three variations,

z= 1 }--| two variations,

x= 2 00000
.T=: 3 h++ one variation,

z= 4 +++++DO variation.

Therefore we infer that there are four distinct and separate roots
; one is 1,

for V vanishes for this value of x ; another between and 1 ; a third is 2, and

a fourth is between 3 and 4. The common measure x 2 indicates that the

polynomial V is divisible by (x 2)'
J

: and hence there are two roots equal to

2 (Art. 253, Cor. 1).
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It may hnppen that one of the functions, V,, V 3 ... V r_i, should be found

zero either for .r=A or .r=B. In this case it is sufficient to count the varia-

tions which are found in the succession of signs of the functions V, V,, V 2

. . . V r , omitting the function which is zero. This results from the demonstra-

tion in Art. 254, V, for the case where an intermediate function vanishes.

When the number of the auxiliary functions, V,, V 2 , &c., is equal to the

degree of the equation, as is ordinarily the case, in consequence of each re-

mainder in seeking for the common divisor being one degree less than the pre-

ceding, the number of imaginary roots in the equation may be found by the fol-

lowing rule: The equation V=0 will have as many pairs of imaginary roots

as there are variations of sign in the succession of the signs of thejirst terms of
the functions V,, V 2 , &c., to the sign of the constant Vm inclusive.

This follows from the fact that two consecutive functions, V,,_i, Vn , are

the one of an even, the other of an odd degree. Then, if the two functions

have the same sign for x=-{-&, they will have contrary for x= co, and vice

versa. So that if we write the succession of signs of V, V,, V 2 Vm , for

x= co and for x=-\-ao, each variation in the one succession will correspond
to a permanence in the other. Thus, the number of permanences for x= CD

is equal to the number of variations for x=-\-<n.
But for x=-\-cc the number of variations will be that of the first terms of

the functions V, V t
. ... Vm , which denote by i. Then there will be i per-

manences for x= oo and m i variations. The excess of the number of

variations m i for x= co over the number i for ar=-j-oo, is m->-'2i, which

is therefore the number of real roots of the equation, and therefore 2i the

number of imaginary roots, the whole number of roots being m.

HORNER'S METHOD OF RESOLVING NUMERICAL EQUATIONS OF ALL ORDERS.

256. The method of approximating to the roots of numerical equations of

all orders, discovered by W. G. Homer, Esq., of Bath, England, is a process
of veiy remarkable simplicity and elegance, consisting simply in a succession

of transformations of one equation to another, each transformed equation as it

arises having its roots less or greater than those of the preceding by the cor-

responding figure in the root of the proposed equation. We have shown how
to discover the initial figures of the roots by the theorem of STURM ; and by

making the penultimate coefficient in each transformation available as a trial

divisor of the absolute term, we are enabled to discover the succeeding figure

of the root; and thus proceeding from one transformation to another, we are

enabled to evolve, one by one, the figures of the root of the given equation,
and push it to any degree of accuracy required.

GENERAL RULES.

1. Find the number and situation of the roots by Sturm's theorem, and let

the root required to be found be positive.

2. Transform the equation into another whose roots shall be less than those

of the proposed equation by the initial figure of the root.

3. Divide the absolute term of the transformed equation by the (rial divisor,

or penultimate coefficient, and the next figure of the root will be obtained, by
which diminish the root of the transformed equation as before, and pro; <

this manner till the root be found to the required accuracy.
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Note 1. When a negative root is to be found, change the signs of the alter-

nate terms of the equation, and proceed as for a positive root.

Note 2. When three or four decimal places in the root are obtained, the

operation may be contracted, and much labor saved, as will be seen in the

following examples :

EXAMPLES.

(1) Find all the roots of the cubic equation

x3 7x+7=Q.
By Storm's theorem, the several functions are (Note, p. 328),

V = ^7^+7
V l=3xi 7

V.2=2x3
V3=+

Hence, for ar=+ oo the signs are ++++ no variation,

x= oo ....... --
j
---

1- three variations ;

therefore the equation has three real roots.

To determine the initial figures of these roots, we have

for x=0 signs -j
----

f-
for z= signs -|

----
[-

r=l..,+--+ x=-l ----
1-
--+

'r=2 . . . ++ ++ *=-2 . .

x=-3 . .

.r=-4 . . . -+-+
hence there are two roots between 1 and 2, and one between 3 and 4.

But in order to ascertain the first figures in the decimal parts of the two
roots situated between 1 and 2, we shall transform the preceding functions into

others, in which the value of x is diminished by unity. Thus, for the function

V we have this operation :

1+ 7 +7 (1

_1 _1 6

~~I ^6 +T
_?

~~2 ^4
1

3

And transforming the others in the same way, we obtain the functions

V'=if+3>S 4^+1; V\=3f+6y 4; V'2 =2y 1; V' 3=+ .

Let 2/='l then the signs are
-\
----

1-
two variations,

y=-2 .......... + + do.

y= '3 .......... +--+ do.

i/=-4 .......... ----
\-

one variation,

do.

y='7 .......... ++++ no variation.

Therefore, the initial figures of the three roots are 1-3, 1-6, and 3.

The rest of the process, with a repetition of the above, is exhibited and

afterward explained below.
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1

1

1

2

1

*33
3

36

3

*395
5

400

5

*4056
6

4062
6

*|40[68
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6

2

+ 7 (1-356895867
6

* 903

-*4..

99

- 301
108

-*1 93
1975

- 17325
2000

-*15325 ..

24336
- 15081 64

24372

*97 . . .

86625

*10375 . .

9048984

*1326016

1184430

141586

132923

48379
325

148053
325

1281

-1181

100

89

11

-A-10

14772

14769

-
1|4|7|6|5

The process here is similar to that on p. 318. The numbers marked with

stars are the coefficients of the equation having the reduced roots. Thus, *3,

*4, and *1 are the coefficients of the equation whose roots are 1 less than

those of the proposed equation. The right-hand 3 of *33 is the 3 tenths add-

ed in the next step of the process, which has for its object to reduce the roots

by -3. The coefficients of the resulting equation are *39, *193, and *97.

Now, instead of going on in this manner to obtain the following figures, 568,

&c., of the root, the method of proceeding changes ; the 193, which is the

penultimate coefficient, becomes a trial divisor, by which dividing the absolute

term 97, which is .097, the divisor being 1-93, the quotient is 5, the next fig-

ure of the root, which is .05. This 5 is annexed to the *39, and we proceed
as before

; that is, multiply the *395 in the first column by this 5, producing
1975 in the second column, and by addition, 1-7325, and so on. To show that

the quotient figure 5 is obtained by means of the trial divisor, observe that tho

1-7325 is nearly equal to the *l-93 above, and that the -086625 in the third

column, which is the product of 1-7325 by the -05, is nearly equal to the *-097

above ; hence the quotient of *-097 by 1-93 is nearly this same -05.

The further we proceed, the more accurate this process becomes, for the

first figure of each number in the first column being units, this, multiplied by
the decimal figure found in the root, which is thousandths, tens of thousandths,

and so on, that is, soon a very small fraction, gives thousandths, tens of thou-

sandths, and so on, or a very small fraction, for the product; and, the first
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figure in the numbers of the second column being also units, these numbers

are not much affected by the addition of the above-named products.**

When the number of decimal places in the numbers of the third column

becomes equal to the number of decimal places required in the root, it will

not be necessary to obtain any more in the third column ; and as each new
decimal figure in the root, multiplied by the number in the second column,

would make one more place in the third, it will be necessary to cut off one

figure in the second column, and, for a similar reason, two figures in the, first

column. As soon as the figures are all cut off in the first column, the process

becomes simply one of division, the divisor and dividend rapidly diminishing.

We have thus found one root a:=l-356895867 , and the coefficients

of the successive transformed equations are indicated by the asterisks in each

column. To find another, we have the following :

7 +7(1-69202147111 6

36

6

6

2

4 . .

216

184
252

42

6

68 . .

4401

489
9

498
9

5072
2

5074
2

|50|76

11201
4482

15683 . .

10144

1578444
10148

1...

-1104

- 104...

100809

3191...

3156888

34112

31774

2338

1589

-749

635

-114

111

158859

1{5|8|8|7|

Another root is z=l-692021471 .......
For the negative root, change the signs of the second and fourth terms.

* To show this in a more general way, let

oxB-r-B*-
l+Bx*~* ....+Bn_,a:+Bn=0

be one of the depressed equations which is to famish the next decimal place of the root of

the proposed equation ;
the value of a: in this depressed equation will of course be a very

small fraction ; hence the higher powers of it may, without much error, be neglected. The

depressed equation thus reduces to

Hence the value of x, without regard to its sign, is

B,

nearly ; that is, it may be obtained by dividing- the ultimate by the penultimate coefficient
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10
3

3

3

904
4

'JO

ALGEBRA.

2

18

20 ....
3616

203616
3632

207248 . .

73024

20797824
73088

7 (3-0489173396

f
1

814464

185536...

166382592

19153408

18791228

362180

208875

153305

146212

9136

..|91|44

2087091
823

2087914
823

208873

208874

7093

6266

827

626

201

188

13

12

2|0|8|817|5

Hence the three roots of the proposed cubic equation are

x= 1-356895867

x= 1-692021471

x= 3-048917339

(-.>)
Find the roots of the equation ar'-j-ll.r

2 102*+ 181=0.

We have already found the roots to be nearly 3-21, 3-22, and 17. (See

Example 4, p. 330.)

1+11
3

14
3

102

42

60

51

+ 181 (3-21312775
180

1...

992

9 . .

404

496
408

204
2

2061
1

~206~2

88. .

2061

6739
2062

- 4677 ..

Carried to next page.

8...

6739

1261...

1217403

43597

34183

9414

6787

2627
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2062
1

20633
3

20636
3

|-2|06[39

4677 . .

61899

405801
61908

2627

23 7-2

34389
2064

341829
2064

255

237

18

16

3397

33935

3|3|8|9

In a similar manner, the two remaining roots will be found to be

and

(3) Given

the real roots.

Here we have

V =

x=3-22952121

x= 17-44264896.

<x 100=0, to find the number and situation of

x 100

+3
16

V3= 1132X+6059

Let x= oo then signs are
-j
----

1

-- three variations,

ar= -^-oo ........ -j--j
---- one variation ;

ence two roots are real and two imaginary; and the real roots must have

ontrary signs, for the last term of the equation is negative. To find th3 sit-

r.tion of the roots

inVV,V,VsV<
Let x=Q signs

--
1-

-4-
-|
--

x=l. . ._
x=2. . ._
x=3. .

Also,

In this example the function Vt vanishes for x= 1, and for the *ame

value of x the functions V and V2 have contrary signs, agreeably to V., p.

325, and writing -4- or for gives the same number of variations. The
initial figures of the root are, therefore, 2 and 3.

Y

in V V
x= signs

--
\-+ -\

x= 1 . . . ++
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To find the negative root, we have the following operation :

3 6
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Hence the difference of variations of sign indicates the existence of one real

and four imaginary roots, the real root being situated between 1 and 2.

1+ 2

1

~~3

1

4

_1

5

1

71

1

72~

1

73

1

74

1

+ 3

3~
4

10
5

F~5

6

21
71

2171

72

2243

73

2316
74

I-.2J390

+ 4

6

10
1

2~0

15
3 5 ...

2171

37171
22 43

39414
2316

417130

422

426

.4|31

+ 5

10

15

20

35 ....
37171

38 7 1 7 1

39414
42 6 5 8 5

844
43 5 2 5

853
4435

21

4457
21

447

44J8

20 (1-125790..
15

5. . . .

387171

112829

87005

-25824

22285

3539

_3136
403

403

Hence the real root is nearly 1-125790 ; and by using another period of ciphers
we should have the root correct to ten places of decimals, with very little ad-

ditional labor.

ADDITIONAL EXAMPLES FOR PRACTICE.

(1) Find all the roots of the equation x
3 3x 1=0.

(2) Find all the roots of the equation x3 22z 24=0.

(3) Find the roots of the equation r'+x3 500=0.

(4) Find the roots of the equation x3
-j-x

2
-|-z 100=0.

(5) Find the roots of the equation 2j3
+3x- 4z 10=0.

(6) Find the roots of the equation r4 12xs+12z 3=0.

(7) Find the roots of the equation x* 8x3+14x5+4x 8=0.

(8) Find the roots of the equation x4 x3+2rs+x 4=0.

(9) Find the roots of the equation x
5 10x3+6x+ 1=0.

(10) Find the roots of the equation xs
+3.r*+2.r

3
3-r= 2x 2=0

(11) Find all the roots of the equation

XS+4Z5 3z< lexs+ll^+^z 9=0.

(1)

(x*+
\
x=

879385242
1-532088886
347296355

5-162277660166
1-162277660166

(3) r=7-617279755938

(4) x=4-264429973156

(5) z= 1-624819083424

(x=
fr=

(2) \ x=

(6)

(7)

(8)

x=+ 2-858083308178

x=-[- -606018306959

x=+ -443276939592
x= 3-907378554730

=+5-236067977500
+ -763932022500

x=+ 2-732050807569
-r= -732050807569

x= +1-146994592039
x= 1-090593586696

{=1 T
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(10) o:=l-0591090034618804

= 1; x= 3; x=l
(11) { r=-3; x=l

{ar=

3-065315791298304
x= -691576280490080
x= -175674799288474.

x=+ -879508708414460
x= 4-3-053058162662302

257. The theorem of Sturm gives a simple means of establishing the con

ditions of the reality of the roots. As the real roots are comprised between

two limits, L' and +Li, the one negative and the other positive, which may
be chosen as large as we please, the question reduces to seeking the conditions

necessary, in order that from x= L' to x=-\-li the series V, V)? V 2 , &c.,

should lose a number of variations equal to the degree of the equation.

Supposing this degree to be m, it must then lose m variations. But in order

that it may have m variations, it is necessary that it should have at least m-\-\

terms ;
and as it can not have more, we are sure that the quantities V, V lt V2,

&c., exist to the number m-f-l and that they are respectively of the degree

m, TO 1, m 2, &c. The last, which does not contain x, will then be repre-

sented by Vm .

When in the polynomial functions of x we substitute very large numbers,

positive or negative, for x, we know that the results are of the same sign as if

each polynomial were reduced to its first term ; therefore, in the present in-

vestigation, we need occupy ourselves only with the first term. Let us take

the equation V= under the ordinaiy form

xm -^-px
m~l

-\-qx
m~~

<2

-\-, &c., =0.

The first term of V is xm
;
that of the derived polynomial, Vi, will be mxm~ l

.

With regard to those of the polynomials V2 , V3 , &c., they are functions com-

posed of the coefficients p, <?, &c., determined by the successive divisions in

accordance "with the rule. Let us represent these functions by G3 ,
G3 . . . G,,.

and write in order the m-j-1 quantities,

3C * Vtlt^C ) \J(%X- "^ \js^K . . . \Tm .

The question will be reduced to~ finding the conditions which will cause the

loss of m variations from this series when we pass from x= L' to .T=-|-L.
In order that this may be the case, it must have m variations upon the substi-

tution of L', and m permanences upon the substitution of +L. But in this

series the powers of x go on decreasing by unity ; consequently, if it has noth*

ing but permanences when ,r=-|-L, it will have nothing but variations when
x= L'. Thus, the conditions are reduced simply to such as require this

series to have only positive coefficients, that is to say, to the following,

G2>0, G3>0 .... Gm>0.
These conditions will never be greater in number than m 1, but they may

be less in number, inasmuch as some of the above inequalities may involve the

others.
.,

EXAMPLE.

258. Find the conditions necessaiy for the reality of the roots of the equa-

tion x>

-\-qx-\-r=:Q.

Here we have m=3, and the conditions are only two in number, G2>0 and

G3>0.
To find Gj and G3 , we calculate Va and V3 by successive divisions, as fol-
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First Dirision. Second Division.

2x 3r

9r

qx \-2q-x
1
-j-lBgrx

I8qrx2qx+3r
2= -2qx 3r.

.-.,= 4q
3 27r2.

Consequently, the inequalities G.2>0, G3>0, become

_2g>0, 4q
3 27r3>0;

observing, however, that the first inequality is embraced in the second, since

r1 is always positive ; and changing the signs of the second, we have for the

sole condition of the roots of an equation of the third degree, being real,

4y
5

+27r-<0.

We have now given so much of the general properties of equations of all

degrees, and such modes of proceeding, as will insure their numerical solution

in a manner the most certain and infallible, and ordinarily the best.

There are, however, many transformations of equations, which, by reducing
their degree, or by giving them a particular form, serve to facilitate their solu-

tion in certain cases. There are also many general principles applicable to

the resolution of equations of the higher orders by the methods in use previ-

ous to the discovery of Sturm, which, with these methods themselves, it is de-

sirable to know for many purposes ia the application of algebraic analysis to

the higher branches of both pure and mixed mathematics, for ulterior improve-

ments in the genefal theory of equations itself, and even for use in the solu-

tion of equations, in some cases, to which they are more conveniently adapted
than the method of Sturm. A treatise on algebra could scarcely be regarded
as complete without some notice of these. We shall therefore give as exten-

sive an exhibition of them as can in any way be useful ha an elementary work

like the present, commencing with the well known

B.ULE OF DES CAKTES.

259. An equation can not have a greater number of positive roots Oian there

are variations of sign in the successive terms from + to , orfrom to -{-,

nor can it Jiave a greater number of negative roots than there are permanences,
or successive repetitions of the same sign in the successive terms.

Let an equation have the following signs in the successive terms, viz. :

New, if we introduce another positive root, we must multiply the equation by
x c, and the signs in the partial and final products will be

where the ambiguous sign i indicates that the sign may be -j- or accord-

ing to the relative magnitudes of the terms with contrary signs in the partial

products, and where it will be observed the permanences in the proposed
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equation are changed into signs of ambiguity ; hence the permanences, takf

the ambiguous sign as you will, are not increased in the final product by the in-

troduction of the positive root -\~a ; but the number of signs is increased by
one, and, therefore, the number of variations must be increased by one. Hence

it is obvious that the introduction of every positive root also introduces one

additional variation of sign, and, therefore, the whole number of positive roots

can not exceed the number of variations of signs in the successive terms of the

proposed equation.

Again, by changing the signs of the alternate terms, the roots will be changed
from positive to negative, and vice versa (see Prop. VII.). Moreover, by this

change the permanences in the proposed equation will be replaced by varia-

tions in the changed equation, and the variations in the former by permanences
in the latter ; and since the changed equation can not have a greater number

of positive roots than there are variations of sign, the proposed equation can

not have a greater number of negative roots than there are permanences ol

sign.

Let v be the number of variations, v' the number of variations of the trans-

formed equation obtained by changing x into x. The number of real roots

of the equation can not surpass v-}-v'. Then, if this sum is less than the de

gree m, the equation will have imaginary roots.

The sum v-{-v' is never greater than the degree, and when it is less the

difference is an even number. (See Art. 248.)

EXAMPLES.

(1) The equation a-
6
+3.T

5 41x4 87x3
4-400x

2
+444ar 720=0 has six real

roots. How many are positive ?

(2) The equation x4 3r3 15z2+49z 12= has four real roots. How
many of these are negative ?

260. We give next the repetition of a principle already presented, but which

may be derived as a direct consequence of the theorem of Sturm.

THEOREM OF ROLLE.

Let F(:r)=0 be an equation which has no equal roots, F'(^) its derived

polynomial. We have seen that as x increases, the series of Sturm loses a

variation every time that x passes over a root of the equation F(:r)= 0. and

that it can not lose one in any other way. Moreover, we have seen that this

variation is lost at the commencement of the series of functions, in conse-

quence of F(x) changing sign, while F'(.r) does not; so that F(.r) is always
of a sign contrary to that of F'(.T) for a value of a: a little less than the root,

and always of the same sign for a value a little greater.

Thus, when we ascend from a root r to a root r', which is immediately
above r, F(x) must be of the same sign as F'(x) for a value of x a little greater

than r, and of a sign contrary toF'(:r) for a value of x a. little less than r'. But

in the interval F(x) does not change sign; then F'(x) must change sign at

least once; therefore the equation F'(a:)
= has at least one root between r

and r'.

Let a, 6, c, d ... g be the real roots of F(.r)=0, arranged in order of magni-

tude, beginning with the largest; and let a,, Z>i, c, . . . g l
be the real roots of

F'(x)=0, disposed in the same manner. We have just seen that theso l;ist

are comprised, some between a and b, some between b and c, <kc.
; but as the
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degree of F'(x), and, consequently, the number of its roots, is one less than

the degree and number of roots of F(x)=0, it follows that the equation

F(x)= can have but one root above a,, but one between a
l
and 6, . . ., and,

finally, but one below g l
. This property, which has been long known, and of

which we have given an independent demonstration at (Ait. 253), is identical

with the theorem of Rolle.

261. The considerations which lead to the theorem of Rolle furnish also

the means of determining whether the TO roots of the equation F(.r)=0 are

real and unequal.

Since a^ is between a and 6, bi between b and c, &c., it is easy to see (Art.

252) that if we substitute successively a,, &t , &c., in place of x in F(x), the

results will be alternately negative and positive ; so that

For F(a,), F(&!), F(c,), &c.,

we have .... , -\-, , <kc.

But we may apply to the function F'(x) and its derived function F"(x) all

that has been said in the preceding article of F(x) and F'(x) ; then,

For .... F"(,), F"(6,), F"(cO, &c.,

we have. . -f-> , -j-> &c.

Then the products F(a l)xF"(a 1 ), F(iJ)xF"(6i), <kc., of which there are

m 1, will be all negative. .

But if we make F(x)xF"(x)=y, and eliminate (as at p. 157) x between

the two equations,

F'(*)=0, F(x) X F"(x)=y (2)

the m 1 roots of the final equation in y wiD be precisely the products above ;

but since all these products are negative, the equation in y will have only

negative roots, and, consequently, all its terms will have the sign -}- Thus,

when the equation F(x)r=0 has none but real and unequal roots, the theorem

of Rolle shows that the roots of F'(x)=0 must be real and unequal also ; and

from what has just been said above, it appears that besides this, the signs are

all plus in the equation in y, resulting from the elimination of x between the

equations (2).

262. Conversely, these conditions being fulfilled, we can demonstrate that

all the roots of F(x)=0 will be real and unequal. And first, the m 1 roots

of F'(.r)=0 being real, from what has just been said, those of F"(x)=0 must

be real, and the m 1 values of y, or F(x)xF"(x) real also; and the roots

of F'(x)=0 being by hypothesis unequal, the theorem of Rolle proves that the

quantities F"(<ZI), F"(&i), &c., have their signs alternately -j- and . Again,
since the equation in y has its signs all -f-, we conclude that it has no positive

roots ;
and since all its roots are real, they can only be negative ; then the

m 1 products

F(a,)xF"(i), F(&i)xF"(&,), &c.,

are negative. But the second factors have their signs alternately -j- and :

then the quantities F(<ZI), F(&a ), &c., must have their signs alternately and

4-. Then there exists above a\. a root of the equation F(x)=0, another be-

tween a, and 6 t , another between bi and c1} &c., therefore the m roots of this

equation are real and unequal.

The conditions drawn from the equation in y may be regarded as actually

known, because this equation is obtained by simple elimination. As to the
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other condition which inquires that the roots of F'(x)=Q be real, let it bo ob-

served that this equation is of tho degree m 1, and, applying to it the same

reasoning as to F(.r)=0, wo reduce the question to determining the reality of

the roots of F"(-r)= 0, which is only of the degree m 2. Continuing thus,

we descend to an equation of the second degree, the derived function of which

being of the first degree, can not have an imaginary root. Then the only con

dition to fulfill will be that the equation y, which is also of the first degree
have its two terms of the same sign.

REMARK. By recurring to the reasoning which led to the uso of the equa-
tion y=F(x) X F"(.T), it is easily perceived that this may be replaced by

MX F(x) X F"(.r), M being any positive quantity whatever. We can then in-

troduce or suppress in the polynomials F(x), F'(x), F"(.r), &c., such positive

factors as may be judged suitable to simplify the calculation.

263. The equation in y, resulting from the elimination ofx in the equations (2),

being of the degree m 1, will have m 1 coefficients, thus presenting m 1

conditions to be fulfilled ; the second equation in
T/, obtained by eliminating x

between the two, F"(x)=Q, y=F'(x) xF'"(.r), will be of the degree m 2,

and present m 2 conditions to be fulfilled, and so on, till we arrive at an equa-

tion of the first degree in y, which will give but a single condition ; then,

taking all the conditions in an inverse order, their number will be express-

ed (Art. 228) by

m(m 1)
1+ 2+3. .. +m-i=-^--L.

264. For an application of the above, let us take the general equation of tho

second degree,

Here we have F(x)=x"-\-px-{-q 1 F'(x)=2x-+-p, F"(.r)= 2, and we per-

ceive at once - that F'(.r) has no imaginary root, since it is of the first degree.

In order to have the equation in ?/, the two equations between which we
must eliminate x are

The elimination gives

Then, in order that the terms of this equation may have the same sign, we

must have -p"
2 ?>0 ; and this is the only condition necessary to insure tho

reality of the roots of the equation of the second degree. It accords with

what we have seen at (Art. 191).

265. Let us consider next the general equation of the third degree. The
second term, it will be seen hereafter, may be made to disappear without

changing the number of the real roots ; we may therefore take it under tho

foi'm

In this case F(x)=xs+qx+r, F'(x)=3x--\-q, F"(.r)= 6r. It is necessary,

first, that the derived equation, 3x*-\-q=Q, should have only real and unequal
roots ;

and for this tho condition is evidently <7<0.
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Secondly, it is necessary to eliminate x between the tvro equations

3^+9=0 .......... (1)

The first gives

and (2) becomes

4

y= -q*+6rx

18r
'

Substituting this in (1), we have, after reducing,

In order that the three terms of this equation may have the same sign, it is

necessary, and it is sufficient, that the known term should be positive. We
have already seen that q must be negative, but q* in the second term is posi-

tive ; then the new condition is 4q
3
-\-27r

s
<^0. Finally, as this new condition

can be fulfilled only when q is negative, it is the only one necessary, in order

that the roots of the equation of the third degree should be real and unequal.

FOURIER'S METHOD OF SEPARATING THE ROOTS.

266. We shall now give another method of separating the roots, proposed

by Fourier, which has the recommendation that the auxiliary functions em-

ployed in it aref(x) and its successive derived functions, which can be form-

ed by inspection ;* so that the method can be applied nearly with equal ease

to an equation of any degree ; in particular, the intervals in which no real root

can be situated are, by Fourier's method, immediately assigned. The objec-

tion to this method is, that by its immediate application we only find a limit

which the number of real roots in a given interval can not exceed, and not the

absolute number ; and that the subsidiary propositions by which this defect is

supplied are not of the same simple character as the original theorem. The
enunciation and proof are as follows.

THIjDREM.
The number of real roots o/"f(x)=0 which lie between two numbers a and b,

can not exceed the difference between the number of variations of signs in the

results of the substitutions of & and bfor x, in the series formed by f(x) and its

derived functions: \\z.,f(x),f'(x),f"(x), ...f"(x).

If none of the equations

/(r)=0,/'(z)= 0, &c.,

have a root between a and b, it is manifest that the substitution of a and 6, and

of any intermediate quantity, in/(x), f'(x), Arc., will always produce exactly
* The method of Sturm employs only the given and first derived functionf(x) andf'(x),

which are the same as V and Vlf the other functions in his method, viz., V2, Vg, Ac., be-
'

ing obtained by the method of the common divisor, which, in practice, is tedious for func-

tions of the higher degrees, especially if they have large coefficients. For methods of sim-

plifying these laborious operations, see Young's Theory and Solution ofthe higher Equations
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the same series of signs ; but if any of these equations have roots between u

and i, then changes in the series of signs will occur in substituting gradually

ascending quantities from a to b ; our object is to show that by such substitu-

tions the number of variations of signs can never increase, and that one varia-

tion will be lost every time the substituted quantity passes through a real root

y(.r)r=0; this we shall do by examining separately each 'of the cases in

which the series of signs can be affected ; namely, 1, when f(x) alone

vanishes ; 2, when some derived function, f
m
(x), alone vanishes ; 3 and 4,

when some group of derived functions, of which f(x) either is not or is a

part, alone vanishes ; and lastly, when several or all of these cases of vanish-

ing happen at the same time.

First, suppose that x=c (c being some quantity between a and 6) makes

f(x) vanish, without making any of the derived functions vanish ; then the

result of substituting c-\-h for x in/(.r) and f'(x) is (supposing h so small that

the signs of the whole of the two series which express f(c-\-Ji) and f'(c-{-h)

depend upon those of their first terms, and writing down only the first terms)

h -f'(c) and/'(c),

which have different or the same signs according as h is or -j- ; therefore,

in passing from c h to c-^-li through a. root of the equation, a variation of

signs is lost, but none gained.*

Secondly, suppose that x=c makes one of the derived functions, fm (x],

vanish, without making any other of the derived functions, or /(a:), vanish ; tlieu

the result of substituting c-\-h for x in the three consecutive functions

f'^(x),f"(x),f^(x),

(these being the only terms which it is necessary to examine)* is

/-He), /t ./"-H(c),/'"+'(c).

If, then, the first and third terms have the same sign, there will be two varia-

tions when h is negative, and two permanences when h is positive ; if the

extreme terms have contrary signs, there will be one variation, and one only,

whether h be negative or positive ; therefore, in passing from c k to c-\-h

through a value which makes one of the derived functions vanish, either two

variations or none will be lost, but none ever gained.

Thirdly, suppose that x=c makes r consecutive derived functions vanish,

without making any other derived function, orf(x), vanish ; then the result of

the substitution of c-\-h for x in the series

/"-'(*), f r+l
(x), . . ../S-'Cr), /(*), /+'(*),

(these being the only terms necessary to be examined) is

Ji
T

7t
2 h

where \r denotes 1 . 2 . 3 . . . . r.

If, then, the extremes of this series have the same sign, there will be r or

r-|-l changes (according as r is even or odd) when h is negative, and no

change when h is positive ; if the extreme terms have contrary signs, there

*
It is unnecessary to attend to the other functions of the series of derived functions, be-

cause h is supposed, so small that not one of them vanishes hy the substitution of any

quantity between c h and c-\-h, and therefore each has the same sign for c h as for

c-\-h.
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will be r or r-j-1 valuations (according as r is odd or even) when h is negative,

and one change when h is positive ; therefore, in passing from c h to c-\-h

through a value which makes r consecutive derived functions vanish, r or rJb 1

changes are lost (according as r is even or odd) but none ever gained.

Fourthly, suppose the vanishing group to consist of f(x) and the first r 1

derived functions (which corresponds to r roots =c inf(x)=0) ;* then the r

suit of the substitution of c-\-h for x inf(x),f'(x), .../^
1

(.r),/
r

(.r),
is

*

in which there are r variations when h is negative, and none when h is posl

tive ; therefore, in passing through a root which occurs r times in the equation,

r changes are lost, but none gained.

Lastly, suppose the substitution of x=c to produce several, or all of the

above cases at the same time ; then, because the conclusions respecting the

effect of the passage through c upon the series of signs in one part of the

series of derived functions are not at all influenced by what happens, in con-

sequence of the same passage, at another distinct part of the series, by what

has been proved, several variations will be lost, but none ever gained.

Since then, in substituting gradually ascending values from a to Z>, variations

of signs are generally lost for every passage through a quantity which makes

one or more of the derived functions vanish, and invariably one for every pass-

age through a root off(x)=0, but none under any circumstances gained, it

follows that the number of roots of f(x)=Q, which lie between a and b. can

not be greater than the excess of the number of variations given by x=a, above

that given by x=b.

267. Hence, if the limits, a and 6, be oo and +x, or any two numbers

the first of which gives only variations, and the second only permanences ; and

if, in the series formed by f(x) and its derived functions,

/<*)./*(*)./"<*), /*(*).

c be substituted for x and be then made to assume all values between these

limits, the series of signs of the results will have the following properties ;

there will at first be n variations of sign, and at last no variation, but n per-
manences ; these variations disappear gradually as c increases, and when once

lost, can never be recovered ; one variation disappears every time c passes

through a real unequal root of f(x)=Q ; r variations disappear every time c

passes through a root which occurs r times iaf(x)=Q ; either two or none of

the variations disappear every time one only of the derived functions vanishes,

without /(.r) vanishing at the same time; an even number^ of variations dis-

appears every time an even group ofp functions (not including the first f(x))
vanishes ; and an even number ^il of variations disappears every time an

odd group of q functions (not including the first/(x)) vanishes. Also, if a value

causes f(x) and the first r 1 derived functions to vanish, and an even group
ofp functions in one part of the series, and an odd group of q functions in an-

other part, to vanish at the same time, the number of variations lost in pass

ing through that value will be r-f-p-f-^il.

268. Hence, if /(z)=0 have all its roots real, no value of x can make any
of the derived functions vanish, and thereby exterminate variations of signs.

* See (Art. 253, Schol).
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without at the same time making/(.r) vanish ;
for if it could, since those vari-

ations can never be restored, and since a variation must disappear for every

passage through a real root, the total number of variations lost would surpass

n, the degree of the equation, which is absurd, since there are but n derived

functions in all. Whenever, therefore, variations disappear between values of

x which do not include a root of f(x)= Q, there is, corresponding to that oc-

currence, an equal number of imaginary roots of/(.r)=0. Hence, if .r=c

produces a zero between two similar signs, or if it produces an even number

p of consecutive zeros either between similar or contrary signs, there will be

respectively two, or p, imaginary roots corresponding ; or if it produces an

odd number q of consecutive zeros, there will be <?il imaginary roots corre-

sponding, according as they stand between similar or contrary signs ; c, of

course, not being a root of f(x)=0.

OBSERVATION. Since the derivatives which follow any one fT

(x) may be

supposed to arise originally from it, it is manifest that the same conclusions

respecting the roots of/
r

(x)
= may be drawn from observing the part of the

series of derived functions

/'(*),/**(*),.../(*)

as were drawn respecting the root of/(x)=0 from the whole series.

269. Des Cartes's rule of signs is included in Fourier's theorem as a par-

ticular case.

For when, in the series formed by f(x) and its derived functions, we put
x=. CD , there are n variations ;

and when we put .r=0, the signs of the series

of functions become the same as those of the coefficients of the proposed equa-
tion

JPn.jPn-l. ~-Pl, 1-

Let the number of variations in this series of coefficients =k, and therefore

the number of permanences (supposing the equation complete) r=n Ic : if

we make .r=-l-co, the signs of the functions are all positive, and the number
of variations =0. Hence, between x= co and =0, the number of varia-

tions lost is n k ; therefore in a complete equation there can not be more
than n k negative roots, i. e., than the number of permanences in the series

of coefficients ; also, between x=0 and x=co, the number of variations lost is

k, whether the equation be complete or incomplete ; hence in any equation
there can not be more positive roots than k, i. e., than the number of variations

in the series of coefficients, which is Des Cartes's rule of signs.

270. Fourier's theorem may also be presented under the following form :

If an equation have m real roots between a and b, then the equation whose
roots are those of the proposed, each diminished by a, has at least m more
variations of signs than the equation whose roots are those of the proposed, each

diminished by b.

The transformed equations would be

and if these were arranged according to ascending powers of y, the coefficients

would be the values assumed by/(r),/'(x), &c., when a and b are respectively
written for x. Therefore, whatever number of variations of signs is lost in the

series f(x),f'(x), &c., in passing from a to 6, the same is lost in passing from

one transformed equation to the other ; but the series for a has at least m
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more variations than that for b; therefore f(y-\- a.)=0 has at least TO more

variations than f(y-\-b)=Q.
71. To apply this method to find the intervals hi which the roots of

y(i)=0 are to be sought, we must substitute successively for x, in the series

formed by/(x) and its derived functions, the numbers

-a, ... -10, 1, 0, 1, 10, ..., + (1),

( a and +,3 being the least negative and least positive number, which give

respectively only variations and permanences), and observe the number of

variations of sign in each result.

Let k and Tc be the numbers of variations of sign when any two consecutive

terras in series (1), a and 6, are respectively written for x ; therefore k k is

the number of real roots that may lie between a and b : if this equals zero,

/(jr)=0 has no real root between a and b, and the interval is excluded; if

h k= I, or any odd number, there is at least one real root between a and b ;

if h k=2, or any even number, there may be two, or some even number, or

none ; the latter case will happen when, as explained above (Art. 268), some

number between a and b makes two or some even number of variations vanish,

without satisfying/(x)=:0. Similarly, we must examine all the other partial

intervals ; and when two or more roots are indicated as lying in any interval,

their nature must be determined by a succeeding proposition.

The two former of the foDowing examples are extracted from Fourier's

work.

EXAMPLE I.

/ (x)= J5 3x* 24r*+ 95x2 46x 101=0

/' (*)= 5X4 12X3 72x-+190.r 46

f"(x)= 20-r3 36x- 144z +190
/"'(*)= 60x- 72-r 144

f* (j)=120or 7-2

/5
(x)=120.

Hence we have the following series of signs resulting from the substitutions

of 10, 1, 0, &c., for x, in the series of quantities

/ /' /" /"' / f6

(-10) - + + +
(-1) + + - +
(0) + - _ +
(1) 4- + + +
(io) + + + + + +

Hence all the roots lie between 10 and +10, because five variations have

disappeared; one root lies in each of the intervals 10 to 1, and 1 to 0,

because in each of them a single variation is lost ; no root lies between and 1,

because no variation is lost between those limits ; and three roots may be sought
between 1 and 10 (because three variations have disappeared), one of which is

certainly real ; it is doubtful whether the other two are real or imaginary.

OBSERVATION. When any value c of x makes one of the derived func-

tions,/^), vanish, we may substitute cA instead of c, h being indefinitely

small ; then all the other functions will have the same sign as when x=c, and

the sign of/m(c/t) will depend upon that of Vm+1
(c); i. ., it will be the
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same or contrary to that of the following derivative, /m+ 1

(c), according as h is

positive or negative, or according as we substitute a quantity a little less or a

little greater than the value which makes/
ni

(.r)
vanish. The use of this re-

mark will be seen in the following example.

EXAMPLE II.

/ (x)=. x* 4^3^+23=0
/"' ( r^= Iz3 12z8 3

,
fn iy\ I2x 2

24.3?

/'"(a:)=24:r 24

/4
(x)=24.

.r=0 -L _ 4-

x=l + +

Every value less than gives results alternately -(- and , therefore there

is no real negative root ; for T=0, we have a result zero placed between two

similar signs, and therefore corresponding to it there is a pair of imaginary
roots. There is no root between and 1, but there may be two roots be-

tween 1 and 10.

EXAMPLE III.

f(x) =3f> 6z*-{- 40x34- 60.r2 x 1 =0.

Here there is no root < 1; there is one, and there may be three, be-

tween 1 and ; there is one root between and 1, and there may be two

roots between 2 and 3.

272. The above process will determine the intervals in which the roots are

to be sought, but not always their nature ; when an even number of roots is

indicated, they may all turn out to be impossible. The series of magnitudes
between co and +00, to be substituted for x in the derived functions, has

been divided into intervals of two sorts, each contained by assigned limits, a

and b. The first sort of interval is one within which no root is comprehended,
i. e., the limits of which give the same number of variations of signs in tho

series of derived functions. The second sort is one within which roots may
lie, i. e., where the number of variations resulting from the substitution of b

is less than the number resulting from the substitution of a, in the series of

derived functions. This second sort of interval has two subdivisions, viz.,

cases where the indicated roots do really exist, and others where they are

imaginary. When we have ascertained that a certain number of roots may
lie between a and b, we may substitute c (a quantity between a and b) in the

series of derived functions, and if any variations disappear, our interval is broker

into two others ; if no variations disappear, we may increase or diminish c, ;

make a second substitution, and it may still happen that no variation is lost, ar

so on continually ; and we may be left, after all, in a state of uncertainty,

whether the separation of the roots is impossible because they are imaginary,

or only retarded because their difference is extremely small. This uncer

tainty is relieved by taking the interval so small as to be sure to include tri

real roots, if they exist.
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One method of arriving at the proper interval is by means of the so-called

equation of the squares of the differences of the roots of the given equation,

which we shall hereafter have occasion to deduce. This process is tedious in

practice ; and as our object in unfolding the method of Fourier was to pursue
it only so far as it threw light upon the general theory of equations, we shall

here leave it.

We should now introduce the theorem of Budan, but it requires a trans-

formation which we have not yet exhibited, and we therefore take this op-

portunity to complete a subject, one proposition of which (Art. 251) we have

already had occasion to anticipate.

TRANSFORMATION OF EQUATIONS.

PROPOSITION I.

273. To transform an equation into another whose second term shall be removed.

Let the proposed equation be

zn+A 1z-1+A2ar
n-^+ A n_1z+An=0 ;

and by Art. 245 we know that the sum of the roots of this equation is Aj ;

therefore, the sum of all the roots must be increased by AI in order that the

transformed equation may want its second term ; but there are n roots, and

Aj
hence each root must be increased by , and then the changed equation will

have its second term absent. If the sign of the second term of the proposed

equation be negative, then the sum of all the roots is +A t ; and in this case

we must evidently diminish each root by , and the changed equation will

then have its second term removed. Hence this

Find the quotient of the coefficient of the second term of the equation
divided by the highest power of the unknown quantity, and decrease or in-

crease the roots of the equation by this quotient, according as the sign of the

second term is negative or positive.

EXAMPLES.

(1) Transform the equation r
5

6i^-}-8x 2=0 into another whose second

term shall be absent.

Here Aj= 6, and n=3 ;
.. we must diminish each root by % or 2

1 _6 +8 2 (2

_2 8

^4 1^2

_2 4

o 4

o

.-. y
3

4y 2=0 is the changed equation.

And since the roots are diminished, we must have the relation rr=y-|-2.

(2) Transform the equation j* 16X3 6r+15=0 into another whose
second term shall be removed.

(3) Transform the equation .r
5
4-15r+12.r

) ?Qx2+14x 25= into an-

">ther whose second term shall be absent.
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(4) Change the equation x2
-{-ax-\-l=0 into another deficient of the second

term.

(5) Change the equation .r
3+a a+i:r+c=0 into another wanting the

second term.

ANSWERS.

(2) yi-,96?/
2

518?/ 777=0.

(3) ys78y3+412y*757y+401=0.

(4) z2-j+Z>=0.

PROPOSITION II.

274. To transform an equation into another whose roofs shall be the recipro

cals of the roots of the proposed equation.

Let ao;
n
+AiX'

1~1

-{-A2a:
n-2+ ..... An_i-|-An=0 be the proposed equa-

tion, and put y=~'i then =-, and by writing
- for x in the proposed equa-

J 3

t:on, multiplying by ?/
n

, and reversing the order of the terms, we have the

equation

whose roots are the reciprocals of the roots of the proposed equation.

The transformation is then effected by simply changing the order of the co-

efficients of the given equation.

Corollary 1. Hence an equation may be transformed into another whose

roots shall be greater or less than the reciprocals of the roots of the proposed

equation, simply by reversing the order of the coefficients, and then proceed-

ing as in the Proposition to Art. 223.

Corollary 2. If the coefficients of the proposed equation be the same,

whether taken in reverse or direct order, then it is evident that the trans-

formed equation will be the same as the original one ; and, therefore, the roots

of such equations must be of the form11 1 1

Corollary 3. If the coefficients of an equation of an odd degree be the

same whether taken in direct or inverse order, but have contrary signs, then,

also, the roots of the transformed equation will be the same as the roots of the

proposed equation ; for, changing the signs of all the terms, the original and

transformed equations will be identical, and the roots remain unchanged when
the signs of all the terms are changed. And this will likewise be the case in

an equation of an even degree, provided only the middle term be absent, in

order that the transformed equation, with all its signs changed, may be identical

with the original equation.

Equations whose coefficients are the same when taken either in direct or

reverse order, are, therefore, called recurring equations, or, from the form of

the roots, reciprocal equations.

Corollary 4. If the sign of the last term of a recurring equation of an odd

degree be +1 oue of the roots of such equation will be 1 ; and if the sign
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of the last term be , one root will be -f-1. For the proposed equation and

the reciprocal have one root, the same in each, and 1 is the only quantity

whose reciprocal is the same quantity ; hence, since each of the other roots

has the same sign as its reciprocal, the product of each root and its reciprocal

must be positive ; and, therefore, the last term of the equation, being the

product of all the roots with their signs changed, must have a contrary sign to

that of the root unity.

Hence a recurring equation of an odd degree may always be depressed to

an equation of the next lower degree by dividing it by ^+1, or x 1, accord-

ing as the sign of the last term is -f- or .

Corollary 5. A recurring equation of an even degree may always be de-

pressed to another of half the dimensions. For let the equation be

dividing by in
, and placing the first and last, the second and last but one, &c.

in juxtaposition, we have

[2]

Assume y=x-}--, then we have

1

=y

&c. &c. &c. =y* 4y
24 2 ;

substituting these values of

*+\ *2

+Ji *'+ia in [2]

the resulting equation is of the form

y+B,!/
1+B#-a+ ..... Bn_,y+Bn=0:

and the original equation is reduced to an equation of half the dimensions.

EXAMPLES.

(1) Transform the equation x3 7z-f7=0 into another whose roots shall

be less than the reciprocals of those of the given equation by unity.

7 7 +0 +1 (1700~
~~0 ~T

_7 _7

7 7

7

. 7zs-j-14:
J+ 72+ 1= is the equation sought, where z-\- 1=-, or*=- .

x 2-t- 1

Z
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(2) Find the roots of the recurring equation

z5 G.r'+Sar'+Sa-
3 6.r+l=0.

By Cor. 4, this equation has one root x= 1, and the depressed equation is

r1 7r5

+12:r
2 7z+l= 0.

Divide by x2
, and arrange the terms as in Cor. 5 ; then

Put .r+-=z ; then a:
2+ =z2 2 ; hence, by substitution, (A) becomes

X X

z2 27z+12=0;
or z2 7z+ 10=0;

and, resolving the quadratic, we get

7 49

~~
2

=5, or 2=2.

Hence x+-=5, and z+-=2, and the resolution of these two quadraticsx x

gives

x=i(5i A/21) and *=+ !, or +1,

and the five roots are

5_i_ ./2i 5 A/21
-1, +1, +1,

^
2

V
. and---

;

5 A/21 (5 A/21)5+ V~21 2521 2
where-=-::

--===-=^= =r, winch is the

5+ V21 2(5+ V21) 5+ -/21

5+ A/21
reciprocal of the root---

.

(3) Give the equation whose roots are the reciprocals of the roots of the

equation
z5 3-r5 2z4

+3r>+12:r
2
+103: 8=0.

(4) Find the roots of the recurring equation

57/5_4yt_|_ 3y
3 3^+ 4y 5 =0.

(5) Find the roots of the recurring equation

1 =0.

ANSWERS.

(3) 8x lOz8 12x< 3x3
4-2.T

2
+3.r 1=0.

1+V^I3 l-y^3 -3+4 A/Hi -3-4 V^
(4)1,

---
,
- --,- -- ad- -

/ 1+ V^ /_l_V^3 /_
(5) -i, v- rS ' V--^ , -v-

/-,l-y^3
V o
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PROPOSITION III.

275. To transform an equation into another whose roots shall be any pro-

posed multiple or submultiple of the roots of the given equation,

Let xB
-j-A 1

rB~1

-f-A 3x
n~2

-f-...An_iX-^-A n=0 be any equation ; then putting

y
ymx, we have x=, and by substituting this value of x in the given equa-

tion, and multiplying each term by m n
, we have

y
n
-f-mA,^"-1

-j-m3A.3y
"~3

-\
----- m"-1A^y -f- 7/1"An= ;

an equation whose roots are m times those of the proposed equation. Hence
we have simply to multiply the second term of the given equation by m, the

third by m3
, the fourth by m3

,
and so on, and the transformation is effected.

Corollary 1. If the coefficient of the first term be m, then, suppressing m
in the first term, making no change in the second, multiplying the third by m,
the fourth by m-, and so on, the resulting equation will have its roots m times

those of the given equation.

Corollary 2. Hence, if an equation have fractional coefficients, it may be

changed into another having integral coefficients, by transforming the given

equation into another whose roots shall be those of the proposed equation

multiplied by the product of the denominators of the fractions.

Corollary 3. If the coefficients of the second, third, fourth, &c., terms of

an equation be divisible by m, i*, m3
, and so on, respectively, then m is a com-

mon measure of the roots of the equation.

EXAMPLES.

(1) Transform the equation 2ar3 4x2
-|-7ar 3=0 into another whose roots

shall be three times those of the proposed equation.

(2) Transform the equation 4x* Sx3 l^j^-f-or 1=0 into another whose
roots shall be four times those of the given equation.

(3) Transform the equation x3-\--x* -z-|-2=0 into another whose roots

shall be 12 times those of the given equation.

ANSWERS.

(1) 2x* 12ja+63z 81=0.

(2) x* 3X3 48x3+80* 64=0.

(3) ar+4i3 36x+3456=0.

PROPOSITION IV.

. To transform an equation into another whose roots shall be the squares

of the roots of the proposed equation.

Let in+A 1ar
n- 1+A3xn

-s
4-.......4-A tt_1ar+An=0 be any equation ; then

x" Ai:r
n- 1 -

r-A3x
II
~"a ...... Jr A^ii^f A =0 is the equation whose roots are

the roots of the former, with contrary signs (Prop. VII., Art. 247).
Let a\, fl2 , s, &c-, be the roots of the former equation, and aM a,, _c3 ,

&c., those of the latter ; then we have

Hence, by multiplying these two equations, we have
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Or x2 ''

(Ai
2 2Aa )x

a"-3
4-(A2

3 2AiA34-2A4)r
2n-4 &c., = (x

2
af)

(x
2 a 3

2
)(.r

2 a3
2
).... by actually squaring and arranging according to the

powers of x. Now, for x2 write y, and we have

yfA,8 SAaJy-'-KV 2A lA3+2A4)3f- .. &c., = (y Oi
9
)(y as

s
)

(7/-a3
2
)...

.-. y
n

(A,
3 2A2)7/

n-1

4-(A2
2 2A 1A34-2A4)7/

n--2 =0 is an equation

whose roots are the squares of the roots of the given equation.

EXAMPLES.

(1) Transform the equation x3
4-3x

2 Qx 8=0 into another whose roots

are the squares of those of the proposed equation.

Here x3 6x= 3x2
4~8 by transposition, and by squaring we have

=9xt 48.r2+64
64=0,

or

ji 21y
8
+84y 64=0

is the required equation.

The roots of the given equation are 1, 4, 2; and those of the trans-

formed equation are 1, 4, 16.

(2) x64-x
3
4-3x

2
4-16x4-15= 0.

The transformed equation is

x5
4-2x*4-33x

3
4-23x

2
4-166x 225=0,

which has (Art. 259) only one positive root, and therefore the proposed has

only one real root.

(3) Transform the equation x3
.r
3

7x4-15=0.
(4) Transform the equation x4 6x3

-f-5x
2
4~2x 10=0.

(5) Transform the equation x4 4X3 8x4-32=0.
(6) Transform the equation x4 Sx3 15x2

-l-49x 12=0.

ANSWERS.

(3) f 157/
2
4-79?/ 225=0.

(4) 7/
4

267/
3
4-29?/

2
1047/4-100=0.

(5) y* I6f 647/4-1024= 0.

(6) 2/
4

393/
3
4-495^

2
20417/4-144= 0.

PROPOSITION V.

277. To transform an equation into another wanting any given term.

By recurring to the transformed equation in Art. 251, note, in which the

roots of the proposed are increased or diminished by a quantity represented

by r, it will be seen that in order to know what value r must have to make the

coefficient of any power of x disappear, it is ouly necessary to place the column

of quantities by which that power is multiplied equal to zero, and the result-

ing equation, when resolved, will furnish the proper values of r. This equa-

tion will be of the 1 degree when it is required that the second term shall dis

appear, it will be of the 2 degree when the third is to disappear, and so on.

The last term can be made to disappear ouly by means of an equation of the

same degree as the proposed.

By removing the second term from a quadratic equation, we shall be imme-

diately conducted to the well-known foi-mula for its solution. Thus, the equa-

tion being
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I3

tue transformed in x'-\-r will be

+ArV=0:
+N >

and, that its second term may vanish, we must have

2r-j-A=0 .-. r= 1A,

which condition reduces the transformed to

N

which is the common formula for the solution of a quadratic equation.

PROPOSITION VI.

278. To transform an equation into one whose roots are tJie squares of the

differences of the roots of the proposed equation.

If in the given equation, f(x)=0, we make x=ai-{-y, Oi being one of the

roots, y will be the difference between a^ and every other root. If we make
.c:=a i -\-y, y will be the difference between a2 and every other root, and so on.

But since a l5 .>, &c., are roots off(x)=0. they must satisfy it; hence

/(ai )
= 0,/(a.;)=0, &c........ (1)

If we eliminate ! or a 2 , &c., between either of these equations (1) and the

corresponding ones, f(a l -\-y)=0, f(a.2-\-y)=Q, Sec., the final equation in y
will be in each case the same, and is therefore the equation whose roots are

the differences of the roots of the proposed equation. It is evidently the same

thing to eliminate betweeny(j) andf(x-\-y).
The form of the equation/(r-j-y) is (Art. 251),

r-

The first term is identical with the proposed equation, and vanishes, and the

whole is divisible by y ; we thus deduce

/'<*)+ rlW ar-
1 ..... (2)

The equation (2) is of the TO 1 degree, and by elimination with the pro-

posed equation of the degree m will produce a final equation of the degree

m(m 1), as will be hereafter shown. It is evident, indeed, that the roots

being of the form a l at, at a^ a\ a3 , G3 alf 03 a3, &c., will be equal in

number to the permutations of TO letters, two and two, which is m(m 1)

(Art. 200). The factors TO and m 1 will the one be even and the other odd,

and the product m(m 1) must therefore necessarily be even ; moreover, since

if one root, a l a.3 , be represented by /3, another, a, al5 will be represented

by 3, and the equation (2) will be composed of factors of the form (y j3)

(y-}-P)=y- &; and hence will contain only even powers of y. It may
therefore be- written under the form

2/
2m+Jpy*

n-2+9y2m
-4+, &c., +P=0 .... (3)

ind if we make y-= :, we have

zm+pz^+ qz>-*+, &c. +<=0 ...... (4)
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as the equation whose roots are the squares of the differences of the roots of

the proposed equation.

279. As an application of the foregoing principles, let us find the equation of

the squares of the differences for the equation of the third degree. In the

first place, I shall make the general remark, that equations (3) and (4) ought

not to change when we augment, or when we diminish, by the same quantity

all the roots of equation (1). Consequently, if the second term of a given

equation be not wanting, we can cause it to disappear (Art. 273), and then

find the equation of the differences for the transformed equation ; we shall

thus find the same equation as if we had not made the second term vanish, since

the differences of the roots will be the same as before, while the calculations

will be less complicated. This being premised, I will suppose that the equa-

tion of the third degree wants its second term, and has the form

x3
-}-qx+r=Q [A]

Designate the given equation by f(x)=Q, and the derived polynomials of

f(x) byyi(a:),/o(:c),/3(.r) ; the rule for finding the equation of the squares

of the differences is to eliminate between the two equations

f(z)=0,Mx)+lf3(x)y+^fa(xW+ ... =0 [B]

But in the case before us we have

Substituting, therefore, these values in equations [B], we shall readily perceive

that the elimination of a: ought to be performed between equation [A] and the

following equation,

3x*-\-q-}-3xy-{-y'
2 Q [C]

We shall, therefore, arrange this equation with reference to x, and then elimi-

nate x by proceeding as if we had to find the greatest common divisor of equa-

tions [A] and [C].

First Division.

x3+ lx + r

Stf+Sqx +3r xy

3yx*-(y-2q)x+3r

Second Division.

3?*+ 2/
2+<

3x+3(y*+qy-3r)
r)x

In the last division we have multiplied twice by y--{-q in order to render the

divisions possible, but if we take y--\-q=0, the divisor reduces to 3r, a quan

tity in general differing from 0.
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Making the last remainder equal to zero, and performing the operations in-

dicated, the equation of the differences is

y+ 6<7yM- 9<fr/M-W- 27r-= ;

taking y-=z, the equation of the squares of the differences becomes

2+ 6qz*+9fz -{-4^+ 27rs= 0.

For the equation i3 7x4-7=0, we have q= 7, r=-j-7; and hence the

equation in r becomes

z3 42z2
4-441: 49=0.

SUDAN'S CRITERION

For determining the number ofimaginary roots in any equation.

280. If the real positive roots of an equation, taken in the order of their

magnitudes, be a^ <z i? a2 , a4 . . . . a., where a, is the smallest, and if we dimin-

ish the roots of the equation by a number h greater than a t , but less than 03,

then the roots win be a, h, a.2 ft, a3 h, ...an ft, and the first of these

will now be negative. But the number of positive roots is exactly equal to

the number of variations of sign in the terms of the equation when the roots

are all real ; and as we have changed one positive root into a negative one,

the transformed equation must have one variation less than the proposed

equation.

Again, by reducing all the roots by k, a number greater than aa, but less

than a3 , we shall have two negative roots, GI fc, a.2 k, in the transformed

equation, and, therefore, we shall have two variations of sign less than in the

proposed equation, for two positive roots have been reduced so as to become

negative ones. Hence it is obvious, that if we reduce the roots by a number

greater than an, all the positive roots will become negative, and the transform-

ed equation, having all its roots negative, will have the signs of all its terms

positive (Art. 259), and all the variations will have entirely disappeared.

We see, then, that if the roots of an equation be reduced until the signs of

all the terms of the transformed equation be -4-, we have employed a greater

number than the greatest positive root of that equation ; and, therefore, its

reciprocal must be less than the smallest real root of the reciprocal equation.

Now, if we take the reciprocal equation, and reduce its roots by the reciprocal

of the former number, we should have as many positive roots If/I in this trans-

formed reciprocal equation as there were positive roots in the proposed equa-

tion, unless the equation has imaginary roots ; hence the number of variations

lost in the former case should be exactly equal to the number left in the latter,

when the roots are all real ; and, consequently, if this condition be not fulfill-

ed, the difference of these numbers indicates the number of imaginary roots.

To explain this reasoning more clearly, we shall suppose that an equation has

three positive roots ; as, for instance, 1, 2-5, and 3. Now if the roots of the

proposed equation be reduced by 4, a number greater than 3, the greatest

positive root, the three positive roots in the original equation will evidently be

changed into three negative ones in the transformed one, and hence three va-

riations must be lost. Again, the equation whose roots are the reciprocals of

the proposed equation must have three positive roots, 1, f, and } ; and it is

evident that if we reduce the roots of the reciprocal equation by , the recip-

rocal of the former reducing number 4, we shall not change the character of

the three positive roots, because ^ is less than the least of them, and 1 |
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|, J } are all positive; hence the three variations introduced by the

three positive roots must still be found in the transformed reciprocal equation,

and, therefore, three variations are left in the latter transformation, indicating

no imaginary roots. The theorem may, therefore, be stated thus :

If, in transforming aa equation by any number r. there be n variations lost,

and if, in transforming the reciprocal equation by -
(the reciprocal of

r), there

be m variations
left,

then there will be at least n m imaginary roots in the

interval 0, r.

For there are as many positive roots in the interval 0, r of the direct equa-

tion as there are between i and - of the reciprocal equation ; hence, if n, the

number of variations lost in the transformation of the direct equation by r, be

greater than m, the number of variations left in the transformation of the re-

ciprocal equation by i, there will be a contradiction with respect to the charac-

ter of a number of the roots, equal to the difference n m. Hence thes;.

roots are imaginary.

EXAMPLE.

Find the number of imaginary roots of the equation

x4 r5

+2.r
2
+.r 4=0.

Direct. Reciprocal.

L 1 4.0 +1 4 (1 4 4 1 4 2 1 +1 (11023 4 3 1 2

0231 3 1 2 1113 _4 7 8

136 7 8 10

12 4 11

1] 19

4

3 15

Here two variations are lost in the transformation of the direct equation,

and no variations are left in the transformation of the reciprocal equation ;

therefore this equation has at least two imaginary roots ; and it has only two,

for the sign of the absolute term is negative, implying the existence of two

real roots, the one positive and the other negative. (See Art. 248, Pr. VIII. ,

Cor. 5.)

EXAMPLE.

To find the number and situation of the real roots of the equation 3^4^
4x2

43.r 100=0 by Budan's method.

If the roots of this equation be all real, the permanences and variation indi-

cate three negative roots and one positive root.

(1) To find the positive root.

1414 14 3 100 (3

44134424 26

3 100 (2

347417 66

In the transformation by 2, one variation is left, and, in transforming by 3,

there is no variation left ; therefore the positive root is between 2 and 3.

(2) For the negative roots.
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Direct Equation.
11+ 1 3100(1

04-1 -2 102

2+0
2+4

Reciprocal Equation.
_100 3+ 1 1+ 1(1

103102103102

signs all

3

Here two variations are lost in the direct transformation, and no variations

ire left in the reciprocal transformation ; therefore the two roots in the inter-

nal and 1 are imaginary.

11+ 1 3 100 (3

2+7+18 46
-1+ 1 3100 (4

3+13+49+ '96

Hence the negative root is obviously situated between 3 and 4.

DEGUA'S CRITERION.

281. In any equation, if we have a cipher-coefficient, or term wanting, and

if the cipher-coefficient be situated between two terms having the same sign,

there will be twd imaginary roots in that equation.

Let the order of the signs be

++-0-+-- .

and for writing + or we have either

++_+_+--,or++---+ ---
In the former of these we find two permanences and five variations, and ia

the latter we have^our permanences and only three variations ; hence, if the

roots are all real, we must, in the former case, have fire positive and two neg-
ative roots, and in the latter, three positive andybwr negative roots (Art. 259) ;

hence we have two roots, both positite and negative, at the same time, and,

therefore, these two roots can not be real roots. These two roots, which in-

volve the absurdity of being both positive and negative at the same time, must,

therefore, be imaginary roots.

In nearly the same manner it may be shown that

(1) If between terms having like signs, 2n or 2n 1 cipher-coefficients in-

tervene, there will be 2 imaginary roots indicated thereby.

(2) If between terms having different signs, 2n+l or 2/i cipher-coefficients

intervene, there will be 2n imaginary roots indicated thereby.

EXAMPLE.

The equation z* z3+&ca+24=0 has two imaginary roots, for the absent

term is preceded and succeeded by terms having like signs ; and the equation

j having the coefficients l00il, has also two imaginary roots

EXAMPLES FOR PRACTICE.

(1) How many imaginary roots are in the equation

1=0 ?

(2) Has the equation x* 2z8+6r+10=0 any imaginary roots ?

THE LIMITS OF THE ROOTS OF EQ.UATION3.

2. The limits of any group of roots of an equation are two quantities be-

tween which the whole group lies ; thus, + x and are limits of the positive

roots of every equation, and and x of the negative roots. But in practice

we are required to assign much closer limits than these, usually the two con-
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secutive whole numbers between which each root lies, so that the inferior

limit is the integral part of the included root. This may be effected without

knowing any of the roots of the equation, as will be seen in the following prop-
ositions. The roots spoken of in this section are the real roots.

SUPERIOR AND INFERIOR LIMITS OF THE ROOTS.

283. The greatest negative coefficient increased by unity is a superior limit

of the positive roots of an equation.

Let p be the greatest negative coefficient ; then any value of x which

makes *

xn
p(

n-1

-fa:
n-2+ ----|-x

2+x+l) positive,

or

will, a fortiori, make

x

orf(x) positive, because in the latter, all the terms after x" will not generally
be negative, and of the negative terms not one is greater than, the correspond-

ing term in the former expression.

xn 1
Now the inequality xn

;>p
--

is satisfied, if

f
xn= or > n-

-, or x 1= or ^>p, or x= or >jp+l.

Since, therefore, p-f-1 and every greater number, when substituted for .c,

will make /(a:) positive, the numerical value of the greatest negative coefficient

increased by unity is a superior limit of the positive roots.f

284. In any equation, if prX
n~T be the first term which is negative, and p

the greatest negative coefficient, 1-|- \Jp is a superior limit of the positive

roots.

Any value of x which makes

will of course make xn-\-piX
a~ l

-\-p?x
r'~'1

-\- . . . positive.

x-T+l 1
Now the inequality xn

^>p
---

, is satisfied if

n-r+l

, or if (xl)r- l(xl)= or >p, or (x 1) =
or ^>p, or x= or

Since, therefore, 1 -f- Vp an& every greater number gives a positive result,

1 -\- Vp is a superior limit.

This method may be employed when the first term is followed by one or

more positive terms.

EXAMPLE.

a^-f-lLc
2 25.r 61=0.

Here r=3, and a limit of the positive roots is

1+ v"61, or 5, taking the next higher integer.

285. If each negative coefficient, taken positively, be divided by the sum

* See (Art. 23). t This is commonly known as Maclaurin's limit.
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all the positive coefficients which precede it, the greatest of the fractions thus

formed, increased by unity, is a superior limit of the positive roots.

Let the equation be

then, since (Art. 23),

Pmx"=pm(x iXx-'-'+x"'^-----\-x

if we transform every positive term by this formula, and leave the negative

terms in their original form, we shall have

0=(x

Now if such a value be assigned to x that every term is positive, that value

will be the superior limit required ;
in the terms where no negative coefficient

enters, it is sufficient to have x> 1 ; in the other terms, each of which in-

volves a negative coefficient, we must have

If, then, x be taken equal to the greatest of these fractions increased by

unity, this value, and every greater value, will make /(x) positive, and there-

fore will be a superior limit of the positive roots. This method gives a limit

easily calculated, and generally not far from the truth.*

EXAMPLES.

(1) 4X5 8x4+23x3+105x3 80x+3=0.
8 80 8^ 80

The fractions are - and ., and j>r ? therefore --+ 1=3 is a

superior limit.

(2) 4*T Gx6 7x5+8x4
-f7r

> 23X3 22x 5=0;
here 3 is a superior limit.

OBSERVATION. The form of the equation will often suggest artifices, by
means of which closer limits may be determined than by any of the preceding
methods ; thus, writing the equation of Example 1 under the form

16\
=0,

we see that x= or >2 gives a positive result, therefore 2 is a superior limit.

Similarly, by writing the example of Ait. 284 under the form

we see that 3 is a superior limit.

We have seen (Art. 248) that an equation of an even number of dimensions

with its last term positive may have no real root ; but we shall now show that

* This is the method of Bret.
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in any equation whatever, if the absolute terra be small compared with the

other terms, there will be at least one real root also very small.

286. In the equation

poX^+piX"-
1

-^, &c., + x r=Q,

where r is essentially positive, and which may represent any equation what-

ever, ify<^/, . xi where p is numerically the greatest coefficient, then there

is a real positive root, <2r.

By dividing by the coefficient of x, and changing the signs of all the terms,

and of all the roots, if necessary, every equation may be reduced to the form

-T+X+, &C., .Jf-p^+pvX^O .... (1)

where r is essentially positive ; let p be numerically the greatest coefficient,

then any value of ,r<l which makes

M _x

will make the first member of (1) positive ; and this condition is fulfilled by

px
3

r+x= or >
-j

because 1>1 a:""1

, or

if, then, 4r(l-j-j?) "O, the radical will have a real value ^>r, and there will be

for x a real value less than .
- which makes the first member of (1 ) posi-

tive, while x=0 makes it negative ; therefore, in any equation reduced to the

above form, if r<d . r, there is a real small positive root, <C/2r.

EXAMPLE.

lias a real root between and -.
o

287. To find an inferior limit of the positive roots, we must transform llie

equation into one whose roots are the reciprocals of the roots of the former ;

and the reciprocal of the superior limit of the roots of the transformed equa-

tion, found by the preceding methods, will be the quantity required.

Hence, if p t denote the greatest coefficient of a contrary sign to the last

Pn
term, , an inferior limit of the positive roots is

;
. For the transformed

JPn+Pr

equation will be (Art. 274)

__ i . 1

7/
n+^-wn-1

-|
-----T- Vr+ ----

\ =0,
^n PU Pa

7? 7?

of which is the greatest negative coefficient; therefore -f-1 is a superior
Pa Pa

limit of its roots ; and, consequently, an inferior limit of the positive roots
Pr~\-Pa

of the proposed equation.
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EXAMPLE.

ar5_42xs+441x 49=0.

49 1
Here n=49, r=441, .-. , or is an inferior limit of the positive

49-^-441 10

roots. By putting x=-, we may discover a limit closer to the roots ; for the
3

transformed equation is61
which evidently has 9 for the superior limit of its positive roots, and, there-

fore, the proposed has - for its inferior limit.

288. To find superior and inferior limits of the negative roots, we must

transform the equation into one whose roots are those of the former with con-

trary signs (Art. 247) ; and if a, /? be limits, found as above, of the positive

roots of this equation, then a and /3 will be limits of the negative roots of

the proposed equation.

EXAMPLE.

x3 7x+7=0;

putting x= y, we get y
3

7y 7=0, of which 1-j- V? or 4 is a superior

limit.

1 113
Also, putting y=-, we get z*+2

2 -=0, or z3 +z =0, of which

-
is a superior limit ; therefore the negative root of the proposed lies between

4 and 3.

NEWTON'S METHOD OF FINDING LIMITS OF THE ROOTS.

289. The limits, however, deduced by any of the preceding methods sel-

dom approach very near to the roots ; the tentative method, depending upon
the following proposition, will furnish us with limits which lie much nearer to

them.

Every number which, written for x, makesf(x) and all its derived functions

positive, is a superior limit of the positive roots.

For, if we diminish the roots a, 6, c, &c., of/(x)=0 by h, that is (Art. 251},

substitute y-\-h for x, the result isf(y-\-h)=Q, or

Now, if we give such a value to h that afl the coefficients of this equation

are positive, then every value of y is negative ; that is, all the quantities, a h,

b h, c h, &c.. are negative, and therefore h is greater than the greatest of

the quantities , 6, c, &c., or is a superior limit of the roots of the proposed

equation. Similarly, h will be an inferior limit to all the roots, if the coefficients

be alternately positive and negative.

EXAMPLE.

To find a superior limit of the roots of

3?53*+7Xl=Q.
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The transformed equation, putting -y-j-h for x, is

in which, if 3 be put for h, all the coefficients are positive ; therefore 3 is a su-

perior limit of the positive roots.

OBSERVATION. This method of finding a superior limit of the roots by de-

termining by trial what value of x will make/(x) and all its derived functions

positive, was proposed by Newton.

WAKING'S OR LAGRANGE'S METHOD or SEPARATING THE ROOTS.

290. If a series of quantities be substituted for x in/(x), then between every
two which give results with different signs an odd number of roots of/(.r)=
is situated

; and*between every two which give results with the same sign an

even number is situated, or none at all ; but we can not assure ourselves that

in the former case the number does not exceed unity, or that in the latter it

is zero, and that, consequently, the number and situation of all the real roots

is ascertained, unless the difference between the quantities successively sub-

stituted be less than the least difference between the roots of the proposed

equation ; since, if it were greater, it is evident that more than one root might
be intercepted by two of the quantities giving results with different signs, and

that two roots instead of none might be intercepted by two of the quantities

giving results with the same sign, and in both cases roots would pass undis-

covered. We must, therefore, first find a limit less than the least difference

of the roots ; this may be done by transforming the equation into one whose
roots are the squares of the differences of the roots of the proposed equation.

Then, if we find a limit Ic less than the least positive root of the transformed

equation, i/k will be less than the least difference of the roots of the proposed

equation; and if we substitute successively for x the numbers s, s -\/k,

s 2 -/&> &c -
(
s being a superior limit of the roots of the proposed), till we

come to a superior limit of the negative roots, we are sure that no two real

roots lying between the numbers substituted have escaped us, and that every

change of signs in the results of the substitutions indicates only one real root.

Hence the number of real roots will be known (for it will exactly equal the

number of changes), as well as the interval in which each of them is contained.

OBSERVATION. This method of determining the number and situation of

the real roots of an equation was first proposed by Waring ; it is, however, of

no practical use for equations of a degree exceeding the fourth, on account of

the great labor of forming the equation of differences for equations of a higher
order.

EXAMPLE.

x3 7x+7=0.
The numbers 1 and 2 give each a positive result, but yet two roots lie be-

tween them. The equation whose roots are the squares of the differences is

(Art. 279) if 42y
2 -
r-441?/ 49= 0, an inferior limit of the positive roots of

which is r (Art. 287) ; therefore,
- is less than the least difference of the

9 o

5 4

roots of .r
3

7x-\-7'=0, and, substituting 2, -, -, the results are -J-, ,

O <J
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.5 54
hence, one value of x lies between 2 and -, and one between - and ; and,

o 03
similarly, \ve find the negative root, which necessarily exists, to lie between 3

and 3^.o

METHOD OF DIVISORS.

291. The commensurable roots of f(x)=Q, which are necessarily whole

numbers, may be always found by the foflowing process, called the method of

divisors, proposed by Newton.

Suppose a to be an integral root ; then, substituting a for r, and reversing

the order of the terms, we have ,

Pa
Hence, is an integer which we may denote by ql ; substituting and di-

viding again by a, we get

<i ~- * i

Similarly,
-

is an integer = jj suppose ; and proceeding in this man-

ner, we shall at last arrive at

Hence, that a may be a root of the equation, the last term, pn , must be di-

visible by it, so must the sum of the quotient and next coefficient, g^p^-i ;

and continuing the uniform operation, the sum of each coefficient and the pre-

ceding quotient must be divisible by a, the final result being always 1.

If, therefore, we take the quotients of the division of the last term by each

of the divisors of the last term which are comprised within the limits of the

roots, and add these quotients to the coefficient of the last term but one ; di-

vide these sums, some of which may be equal to zero, by the respective

divisors, add the new quotients which are integers or zero (neglecting the

others) to the next coefficient and divide by the respective divisors, and so on

through all the coefficients (dropping every divisor as soon as it gives a frac-

tional quotient), those divisors of the last term which give 1 for a final re-

sult are the integral roots of the equation ; and we shall thus obtain all the in-

tegral roots, unless the equation have equal roots, the test of which will be that

some of the roots already found satisfyf'(x)=0, and the number of times that

any one is repeated will be expressed by the degree of derivation of the first

of the derived functions which that root does not reduce to zero, when written

in it for x (Art. 253). It is best to ascertain by direct substitution whether

-}-l and 1 are roots, and so to exclude them from the divisors to be tried.

EXAMPLE I.

r'4-32
3

8jr+10=0.
' 8

Here the roots lie between --J-1 and 11 (Arts. 285, 288), and the divi-

sors of the last terra are {^, 5, 10 },
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.-. a = 2 2 5 10

ql= 5 . 5 2 1

_8)= 3 13 10 9

&= 2

5

Therefore 5, being the only one of the divisors which leads to a last quo-
tient 1, is the only commensurable root, and it is not repeated, since it does

not satisfy the equation/'(j:)=3x
2
-j-6x 8=0.

EXAMPLE II.

xSStf+tf+Wx* 20x+16=0.
Here limits of the roots are 6 and 4 ; and the commensurable roots are

4, 2, -2.

EXAMPLE III.

a^^_5r_2a:
2

6^4-20=0; x= 2, or 5.

292. The number of divisors to be tried may be lessened by observing, that

if the roots of/(x):=0 were diminished by any whole number, m, the last

term of the transformed equation, f(y-\-m)= Q, would be/(m) ; if, therefore,

a were an integral value of x, a m would be an integral value of y, and would

be, therefore, a divisor of /(m). Hence, any divisor, a, of the last term of

f(x) is to be rejected which does not satisfy the condition -- = an integer,

when for m any integer, such as Jbl, rtlO, &c., is substituted.

EXAMPLE I.

Changing the signs of the alternate terms, we have

/ 18\
or

5

-}- 5.r
2 18* 72=0, or x5 72+5x(x )

=0-.

therefore the roots lie between 19 and 5.

But /(l)=50,/(-l)=84,/(-3)=54;
and the only admissible divisors of 72, which, when diminished by 1, divide

50, are

6, 3, 2, 4 ;

also, all these divisors, when increased by 1, divide 84; but only 6, 3, 4,

when increased by 3, divide 54 ;

.-. 6, 3, 4,

are the only divisors which need to be tried ; and they will all be found to be

roots.

EXAMPLE II.

.r
3 6.r

2
+lG9.r (42)

2=0. ar=9.

293. If a proposed equation have fractional coefficients, or if its first term

be affected with a coefficient, since (275, Cor. 2) it can be transformed into an-

other equation with first term unity and every coefficient a whole number,

this method will enable us to find the commensurable roots of every equation

under a rational form. If the coefficients be whole numbers and the first term

be fox", and we only wish to find the roots which are integers, no transfonna-
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tion will be necessary, only every divisor of the last term which is a root will

lead to a result p instead of 1.

EXAMPLE.

61* 25r5+2&rs
+4a: 8=0.

It is the same as

(x 2)*(3x 2)(2z+ 1) =0.

NEWTOJf'S METHOD OF APPROXIMATION.

294. When we know an approximate value of a root, we may easily obtain

other values of it, more and more exact, by a method invented by Newton,
which rapidly attains its object. We shall give this method, first in the form

in which it was proposed by its author, and afterward with the conditions

which Fourier has shown to be necessary for its complete success.

Let/(.r)=0 be an equation having a root c between a and &, the difference

of these limits, b a, being a small fraction whose square may be neglected in

the process of approximation.
Let Ci, a quantity between a and 6, be assumed as the first approximation

to c, then crs^-j-A, where k is very small ;

Now, since h is very small, As
, h3, &c., are very small compared with h ;

also, none of the quantities^""(c\),f'"(ci), &c., can become very great, since they
result from substituting a finite value in integral functions of x ; therefore, pro-
vided f'(ci) De D0t v'ery small (that is, provided f'(x)=Q have no root nearly

equal to ct or to c, and, consequently, /(z)=0 no other root nearly equal to c

besides the one we are approximating to), all the terms in the series after the

first two may be neglected in comparison with them ; and we have, to deter-

mine h, the resulting approximate value of h, the equation

and the second approximation is

Similarly, starting from Cj instead of c t , the third approximate value will be

C3=c,_ 5 /(*) I

and so on ; and if we can be certain that each new value is nearer to the truth

than the preceding, there is no limit to the accuracy which may be obtained.

EXAMPLE I.

3? 2x 5=0.
Here one root lies between 2 and 3, and the equation can have only one

* This notation signifies, that after the division indicated is performed, the particular

value, ci, is substituted for x.

A A
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positive root ; also, upon narrowing the limits, we find that :r=2 gives a nega-

tive, and :r=2-2 a positive result; therefore, 2-1 differs from the root by a

quantity less than 0-1, and we may assume Ci=2-l. Hence
/.r3 2x 5\ _ o

0-061

~\ 3.r
2 2 / :K=2 .

1

=2 '

""11-23'

or

c2=2-l 0-0054=2-0946.

Similarly,

c3=2-09455149.

EXAMPLE II.

3? 7x 7=0.
There is only one positive root lying between 3 and 3-1, and it equals

3-048917339.

OBSERVATION. To guard against over correction, that is, against applying

such a correction to an approximate value as shall make the new value differ

more from the root by excess than the original approximate value did by de-

fect, or vice versa, we must be certain that each new value is nearer to the

truth than the preceding; this gives rise to the following conditions, first no-

ticed by Fourier.

295. For the complete success of Newton's method of approximation, the

following conditions are necessary.

1. The limits between which the required root is known to lie must be so

close that no other root of/(.r)=0, and no root of/'(x)=0, or/"(.r)=0, lies

between them.

2. The approximation must be begun and continued from that limit which

makes /(.r) &ndf"(x) have the same sign.

Let c be a root of/(.r)=0 which lies between a and b, a<&, ct the first ap-

proximate value, and h the whole correction, so that c=Ci-\-h ; then

/(Cl+ 7i)=0, or/(Cl)-W(A)= 0,

/, being some quantity between C[ and c (Art. 239, Note).

Therefore, supposing A=CJ, which amounts to neglecting all powers of h

above the first, and requires that/(x)= have no root besides c in that interval,

and calling the resulting approximate value of h, hi, we have

Now the true value is c=ci-^-h ;

The first approximate value is Ci with error h ;

The second approximate value is c2=c 1 -j-/i 1 with error h hi, which (neg-

lecting signs) must be less than h,

a. e., /t
2

(h hi)
2 must be positive, or 2hhi h^= -{-,

which condition (since A is an indeterminate quantity between ^ and c, or be-

tween a and b) can not in all cases be secured unless f'(x) bo incapable of

changing its sign between a and b, i. e., unless/'(.r)= have no root between

a and b.

Moreover, we must have ^r-r >-, or >1, tlio Inttnr insuring the former.
J V-)

Now, if/''(
r
) preserve an invariable sign between a and &, i. e., if/"(x)=0
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have no root in that interval, then /'(r) will increase or diminish continually'

from a to b ; therefore c t must be taken equal to that limit -which gives f'(x)

its greatest numerical value without regard to sign.

First, let/'(x),/"(x), have the same sign from a to b ; then/'(z) increases

continually in that interval; therefore we must have cls=b 1 or we must begin

from the greater limit. But/(6) has the same sign asf(c-}-h)=f(c)-\-hf'(c)

=hf'(c), or as/'(c) ; therefore we must have Ci equal to that limit which makes

f(x) andy""(z) have the same sign.

Secondly, let f'(z),f"(x), have contrary signs from a to b ; thenf'(x) di-

minishes continually in that interval; therefore we must have Ci=a, or we
must begin from the lesser limit. But f(a) has the same sign as f(c h)

=f(c)hf'(c)=hf'(c), or as /'(c); therefore, in this case, equally as in

the former, we must have ct equal to that limit which makes f(x) andy~"(x)

have the same sign.

These conditions being fulfilled, we have

t=+ ,

therefore c.2 lies between c and c\ ; hence, the new limit, c3 fulfills the requi-

site conditions, and we may with certainty from it continue the approxima-

tion.

296. To estimate the rapidity of the approximation, we have

error in first approximate value cl5 =h,
error in second approximate value c4, =h h

l ;

But /(cl)+/*/'(c1)-HA*/"00=0,

,/"GOor h hi=

Let the greatest value which /"(r) can assume between a and b (which
will be either /"(a) orf"(b), iff'"(x)=0 have no root in the interval) be di-

vided by the least value of 2/'(ar) in that interval which will be either 2/'(a) or

2/'(6), and let the quotient be denoted by C ; then, neglecting signs,

hence, if the first error h in Ci be a sma.l decimal, the error h hi with which

c.- is affected (since C will not, except in particular cases, be very large) will

be very small compared with h ; and if the quantity C be less than unity, the

number of exact decimals in the result will be doubled by each successive

operation. The quantity C, when thus computed for a given interval, pre-
serves the same value throughout the operations which it may be necessary to

make in order to approximate to the value of the root lying in that interval ;

and as we thus know a limit to the difference between the approximate value

already found and the true value, we may always avoid calculating decimals

which are inexact, and only obtain those which are necessarily correct.

EXAMPLE.

6*3 141z+263=0.
This equation has two positive roots, one between 2-7 and 2-8. and the
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fir
other between 2-8 and 2-9. Now f'(x)= l8.i:

: 141=0 has a root =\j^r

=2-798, between 2-7 and 2-8, therefore these limits are not sufficiently close;

but this root is greater than 2-79 ; also, 2-7 and 2-79, substituted mf(x), give

results with different signs ; and 2-7, substituted in f(x) and f"(x), gives re-

sults with the same sign ; therefore, C!=2-7.

With regard to the other interval, 2-8, 2-9,/'(x)= 0,/"(.r)=0 have no roots

between these limits, and 2-9 makes f(x) and f"(x) have the same sign ;

therefore, ct=2 -

9; and starting from these values, we are certain in each

case to get a value nearer to the truth.

f"(x)
Again, the greatest value which

f/ff)
. can assume in the interval 2-7,

2-79, is nearly equal to 10 ; hence, if hi, h2 , be consecutive errors, we have

The same formula will be found to be true for consecutive errors in the in

terval 2 8, 2-9.

LAGRANGE'S METHOD OF APPROXIMATION BY CONTINUED FRACTIONS.

297. To approximate to the roots of an equation by the method of continued

fractions.

Let the equation /(.r)=0 have only one root between the integers a and

a-\-l ;* then, writing a-}-- for x, the first transformed equation will be

and, since only one value of- lies between and 1, y has only one value greater

than 1 ; if, therefore, we substitute successively 2, 3, 4, &c., for y, stopping

at the first which gives a positive result, the integer preceding that is the in

tegral part of the value of y. Let this be b, and in (1) write b-\-- for y ; ther.

the second transformed equation will have only one root greater than unity,

the integral part of which, as before, will be the whole number next less than

the one in the series 2, 3, 4, &c., which first gives a positive result when
written for z ; let this be c, and in the second transformed equation write

c-j_
- for 2, then the third transformed equation will have only one root greateru

than unity, the integral part of which may be found as before, and so on.

We thus obtain successively the terms of a continued fraction

which expresses the required value of x. The method of reducing such a

fraction, called a continued fraction, will be hereafter given.

* The roots of the equation may be made to differ by at least unity, if we find by means

of the equation of the squares of the differences the least limit to the differences of the

roots of the proposed equation, and then find a transformed equation whose roots shall be

that multiple of those of the proposed, which is expressed by the denominator of the least

limit of the differences.



LAGRANGE'S METHOD OF APPROXIMATION

If any of the numbers b, c, d, Sec., is an exact root of the corresponding
transformed equation, the process terminates, and we find the exact value of x:

Also, if one of the transformed equations be identical with a preceding one,

the continued fraction expressing the root is periodical ; for, after that, the

same quotients will recur in the same order ; in this case a finite value, in the

form of a surd, maybe obtained for the root (see Continued Fractions) by solv-

ing a quadratic whose coefficients are rational, both of whose roots will be roots

of the proposed, since the coefficients of the latter are supposed rational ; con-

sequently, the first member of this quadratic will be a factor of the first mem-
ber of the proposed equation, which may. therefore, be depressed two di-

mensions.

EXAMPLK.

To find the positive root of or
3 2r 5=0 under the form of a continued

fraction.

Comparing this with x3 qx-{-r=0, we find that

r* o3 25 8

j 27=1 27
is a p sitive quantity ;

therefore (Art.^SS) the equation has two impossible roots; and since its last

term is negative, its third root is positive. Substituting 2 and ?, the results are

1 and 4-16; therefore the root lies between 2 and 3. Assume .r=2-|--

and the transformed equation is

ys_10i/
2

6y 1=0,

in which 10 and 11 being substituted, give 61, +54. Assume
t/ .IO-f--

and we obtain

6l:_942 20z 1=0,

whose root lies between 1 and 2. Proceeding in this manner, we find

1111
*=2+io+T+rh>-

the value of the root in a continued fraction ; the method of reducing which
to a common fraction will be hereafter given.

This method may be combined with Sturm's theorem.

Here finishes our recapitulation of the older methods. "What follows be-

longs to the present more improved state of algebraic science.*

* We shall here point oat a method of finding the equal roots of an equation, which

avoids the laborious process of seeking the common divisor, and which may be employed
when any other than Sturm's process for discovering the roots of an equation is used.

1. If an equation whose coefficients are commensurable have a pair of equal roots and no

greater number, these roots must be commensurable ; for the common measure of the first

member of this equation, and the function derived from it, will be a binomial expression of

the first degree with finite coefficients, and which, when equated to zero, will famish one

of the equal roots ; these roots, therefore, must be commensurable, that is, either integers

or fractions.

2. If the leading coefficient in the supposed equation be unity, and the others integral,

the equal roots must be integral, because no fractional root can exist under these condi-

tions (Art. 246).

3. If an equation with commensurable coefficients have three equal roots, and no more,

these also must be commensurable ; for, in this case, the common measure will ba of the

second degree, and, when equated to zero, will give two of the equal rorts : these roots, rs

just remarked, must be commensurable ; hence all the three roots must be commensurable
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BINOMIAL EdUATIONS.

U98. Binomial equations are those which can be reduced to the form

xm=A. or xm A=0 (1)

A being any known quantity whatsoever.

And, as before, if the leading coefficient be unity, and the others integral, the equal roots

will be integral.

4. By the same reasoning, if an equation with commensurable coefficients have m equal

roots, and no other groups of equal roots, these m roots must be commensurable
;
and they

will be integral if the leading coefficient be unity and the other coefficients integers.

5. When the leading coefficient is unity, and the other coefficients whole numbers, and

m equal integral roots enter, we may infer, from the formation of the coefficients (245), that

the absolute number, and the coefficient of the immediately preceding term, that is, the

coefficient of x, will admit of a common measure involving m 1 of these roots
;
that the

coefficients of x and x" will have a common measure involving m 2 of them ; and so oil

till we come to the coefficients of xm~2 and xm~ l
, which will have a common measure in-

volving the multiple root once. For, if the depressed equation containing only the unequal
roots be considered, it will involve none but integral coefficients, since its last term is form-

ed from the penult coefficient of the proposed divided by one root ; so that if the equal roots

be now introduced, they can combine with none but integral factors. Hence, if the root occur

twice, it will be found among the integral factors of the common measure of the coefficients

An (the final coefficient) and An i ;
if it occur three times, it will be found among the fac-

tors of the common measure of An, An i, and An :, and so on. And, therefore, by trying
several factors of the common measure in question, by actually substituting them for x in the

proposed equation, when from any circumstance multiple roots are suspected to exist, we
may remove all doubt on the subject. In analyzing an equation, the doubts that may aiise

as to the entrance of equal roots are confined to certain definite intervals, or within deter-

minate numerical limits ;
so that, of the factors adverted to above, only those falling within

these limits need be regarded.
And further, if the repeated root occur but twice, the square of it must be a factor of xfl

or An ;
if it occur three times, the cube of it must be a factor of An ,

and the square of it a

factor of An i ;
if it occur four times, the fourth power of it must be a factor of An, the cube

of it a factor of A n i, and the square of it a factor of An 2, and so on. And thus, of the

factors of An to be tested, those only need be used whose powers also are factors, entering,

as here described, according to the multiplicity of the roots.

6. These inferences may be easily generalized : they apply, whatever be the integral

value of the leading coefficient, and whether the repeated root be integral or fractional.

Thus, let the repeated root be x= -, a and b having no common factor ; then, if the root en-

ter m times, the original polynomial will be divisible by (bx a)
m

, giving a quotient in-

volving the remaining roots, and into which none but integral coefficients enter (233). Let

us now return to the original polynomial by multiplying this quotient by bx a m times :

the first multiplication by bx a will evidently give a product, into the first term of which

b must enter as a factor, and into the last of which a must enter
;
the next multiplication

must, therefore, give a product, into the first tenn of which Ifl must enter, into the second

b, into the last -, and into the last but one a ; the third multiplication, therefore, must

give a product whose first three terms involve b3 ,
i2

,
b respectively, and last three a", a'2 ,

a, reckoning these last in reverse order, and so on. Hence the coefficients Ai, A<, Aj, <5cc.,

will be divisible by b, bm~l
, bm

~2
, &c., respectively, down to b ; and the coefficients A n ,

An i, An 2, &c., by am
,
a 1

, a 3
, &c., down to a. In other words, the coefficients, taken

in order, reckoning from the beginning, will be divisible by the corresponding deer,

powers of the denominator of the repeated root ; and the coefficients, reckoning from tin-

end, will be divisible by the like powers of the numerator.

7. The inferences still have place, whatever be the degree of the multiple factor enter-

ing the pro[-osed polynomial, so long as this factor, as well as the original polynomial, have

none but integral coefficients. This is plain, from the reasoning in the ]"'

which remains the same, as respects the entrance of the factors b, a, whether the repeated

multiplier be bx a or te'n -f- .... +a.
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We perceive immediately that the m roots of this equation are different

from one another; for the first member x A has no common factor with its

derived function mz" 1

, and hence the proposed equation (Art. 253, Schol.)

can not have equal roots. The roots, if we raise them to the power ;n, ought
each to produce A, since they are the same as the values embraced in the ex-

pression x= yA. We know, then, that this radical has m different values ;

but we shall recur to this subject again, and more at length.

299. When m is any composite number, the solution of equation (1) re-

duces itself to the solution of several binomial equations, the degrees of which

are the factors of m.

Suppose m=pqr, instead of the equation xw
T=Q, we can take the equations

xf=xr
, x"t=x", ar"

r=A,
in which x', x" are new unknowns.

It is evident that, after we have solved the equation z"r=A, the preceding

equation x'*=.x" will make known the values of j', and that then the equa-
tion xf=x' will give all the roots of the proposed equation. This agrees with

the formula demonstrated in the theory of radicals (Art. 63), viz.,

300. Designate by a a quantity whose mP power is A, and take x=ay.
The equation zm=A becomes amy

m=am
; dividing by am,

jT=^i;

hence y=^/l, and, consequently, x=^a^/\.
We conclude, therefore, that the roots of the equation xm=A. can be ob-

tained by multiplying one of them by the roots of the equation y
l =l ; or, in

general, that the different m* roots of a quantity can be obtained by multiply-

ing one of them by the m* roots of unity.

301. Let us consider more particularly the case in which A is a real quan-

tity ; and, to distinguish the hypothesis of A being positive or negative, write

the binomial equation in this form :

(2)

These conclusions will greatly simplify the research after equal roots, and will either

enable us wholly to dispense with the laborious process for the common measure, or wilL

at least, render the more tedious steps of it unnecessary

EXAMPLES.

2x* 12i3-|-19:zS 6x-j-9=0 ............ (1)

x'-f5j^-|-6j^ Or4 15^33x2+8x4-4=0 . . . (2)

The first of these can have no fractional repeated roots, because the leading coefficient

2 has no factor a perfect power; the equal roots, if any, must, therefore, be integral.

Unity, which always has claims to be tried, does not succeed ; and from the factors of 9

and 6, it is plain that -f-3 and 3 are the only other numbers to be tested ; and as no

higher power of 3 than the square enters 9, we infer that more than two equal roots can

not have place in the equation. By testing 3, we find this to be one of a pair of equal
roots. Equal quadratic factors could not possibly enter the equation, since, as the first co-

efficient shows, the polynomial is not a complete square. In the second of the above equa-
tions no fractional roots can enter. Applying, therefore, -f-1 and 1, we discover that

-f-1 is iwice a root, and 1 three times. The remaining equal roots 2 and 2 are

found from the resulting- quadratic obtained by suppressing from the given equation the

five factors of the first decree.
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We can determine, at least by approximation, a positive quantity a such

that we have aro=A. Take, again, x=ay, equation (2) will become

7/=l.
This is the equation to which I shall confine myself exclusively.

302. The following remarks may be made with regard to this equation :

1. When m is an odd number, and the equation is y = l or y
m 1=0, it

evidently has the root y=l ; and it has no other real root, for every other

positive value of y will give y
m
^>l or y

m <O, and a negative value will render

y
m

negative. To obtain the equation on which the 7/1 1 imaginary roots de

pend, we shall divide y
m 1 by y 1, and thus obtain the equation

which belongs to the class of equations called reciprocal.

2. When m is an odd number, and the equation is y
m= 1, it has evi

dently for a root y= 1. By a reasoning analogous to the preceding,
it may be proved that the other roots are imaginary ; and we obtain the

equation on which they depend by dividing y
m-\-lQ by y-\-l. But to

obtain all the roots of the equation y
m= 1, it is well to remark that this

equation can be derived from y
m= 1 by changing y into y. It will suffice,

then, to take all the roots of y
m= l with contrary signs.

3. Suppose TO is an even number, and let m=2w, the equation ?/
2n= l, 01

7/
2n 1= 0, has for its roots y= -f-1 and y= 1. The other roots are imagin-

ary, and the equation which contains them can be obtained by dividing i/
2n

]

=0 by (y l)(7/-j-l) or
2/

2
I? but it will be well to observe that 7/

2n
1

=
(i/

n
l)(i/

n
-|-l), and that, consequently, the equation ?/

2n 1= can be re-

placed by two others more simple,

y
n 1=0, y

n
-\-l=Q.

4. Finally, when the equation is y-"= 1, or
?/
2n

-|-l= 0, we know that the

even powers of real quantities will always give positive results ; we hence

conclude that all the roots are imaginary. Taking ^
2=z, the equation reduces

to the degree n, and becomes simply z"= 1.

303. I now proceed to determine the solutions of the equations y
m 1=0,

i/
m
-|-l=0, in some particular cases.

Let m=2 ; the equations to be resolved are

y" 1=0, whence
?/
= rtl ;

y
2
-|-l=0, whence y= i -/ 1.

Let m=3 ; to resolve the equation y
3 1=0, observe that it has for a root

iy=l ; we divide it by y 1, and it becomes

.= 0, whence y=~

Hence, the three roots are

3 l

,

2
.

If we take the equation ^-{-1= 0, we shall observe that its roots are the

same, except as regards sign, with those of T/' 1=0; consequently, they
wiD be
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Let m=4 ; the equation y* 1=0 may be decomposed into two others,
* 1=0, i/

3
-|-l=0; and from these equations we derive the four roots

The equation y+1 will be resolved differently; by adding 2y- to both

members of the equation, we can write it thus :

we can then decompose it into two others,

y*+ I=y -/I, 3/

a+ 1= y V~2 ;

and, finally, from these we derive the four values of y,

We could have treated the equation y
4
-j-l=0 as a reciprocal equation.

We might have observed, also, that it gives y-= V 1, and that, taking

successively + V 1 V 1 we have

_
We have then only to reduce these values to the form a-J-3-/ 1 by the

process in Art. 104.

By raising the equation y
m
^pl=0 successively to the 10 degree, we

shall find that its resolution depends on that of the preceding cases, or on the

resolution of reciprocal equations, which reduce it to a degree less than the 5.
Let us examine, first, the odd degrees. If we have the equation ?/

5 1=0,

having observed that it has the root y=l, we divide it by y 1 ; it then be-

comes

a reciprocal equation, which we shall reduce to the 2 degree. To do this,

we first write it under the form

Then take y-{--=z, which gives y*-{-=z* 2; and, consequently, the
J J

equation in y will be changed to the following :

1-/5
z*-\-z 1=0, whence z=---

.

These values being known, those of y will be by the relation y-\--=z, for

y

this relation gives
3 4

and we have only to substitute instead of z successively each of its two values,

in order to find the four imaginary values of y. We have then the five values

1+-/5 V10+2-V/5
9= 4

- -V-l,

-1-V5, Vl'102^5
y=-
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The equation y
7 1=0 will lead to the equation zs+z2 2z 1=0, and

the equation if 1=0 to the equation z4+z3 3z2 2z+l=0.
The equations y

5
-{-l=Q, ?/

7
-{-l= 0, ?/9-|-l=0 have, except as regards the

signs, the same roots as if their second terms had been 1.

Let us examine the even degrees. The equations y
6 1=0, i/

8 1=0,

y
10 1=0 do not offer any difficulty, because each of them can be decom

posed into two others whose roots are known.

Taking -[-1 instead of 1, the analogous equations are

2/
6
-j-l=0, whence y=\ V 1>

i/
8
-|-l=0, whence y\ M 1,

i/
10
-|-1=0, whence

But we know the values of 3/ 1, \f 1, ty 1 ; we have, then, only to

extract the square roots by the processes in Art. 104. But it will be simpler

to treat these equations as reciprocal ; for the transformed equations in z, on

which they depend, have roots which are real, and are very easy to resolve.

We add some propositions upon binomial equations, preparatory to giving a

general method for solving those of all degrees.

PROPOSITION i.

304. If a be one of the imaginary roots of the equation xn 1=0, then any

power of a will be also a root.

For, since a is one root of the equation x
n 1=0, therefore an= l, and, con-

sequently,
o2n= l, o3n=l, a<n=l, &c., also a~n =l, a-2n=l, a-3n=l, &c.,

the values

a, a2
,
a3

,
a" 1

, a"
2

,
a~3

, ,

thus satisfying the conditions of the equation, are roots of it.

Corollary 1. It hence appears that the roots of the equation x
n 1=0 may

be represented under an infinite variety of forms, each term in the following

series being a root, viz. :

a-3
, <r^, a"1

, 1, a, a2
,
e3

, a""1

, a", an
+', a2n

,
a2n+',

in which series, however, there can not be more than n quantities essentially

different, otherwise the equation would have more than n roots.

PROPOSITION II.

305. If a be one of the imaginary roots of the equation .r
n
-j-l=0, then any

odd power of a will be also a root.

For, since a is one root of the equation xn= 1, therefore o"= 1 ; and,

since eveiy odd power, whether positive or negative, of 1 is also 1,

therefore,

also

a"3"^ 1, a~fm= 1, a~7n= 1, &c. ;

so that the quantities

a, a3,
a3

. . . ., a" 1

,
a~3

,
a~5,

. . . .,

are roots of the equation. These roots, therefore, assume an infinite varirly

of forms, although there can not be more than n essentially different.



BINOMIAL EdTJATIONS. 379

PROPOSITION III.

306. To determine the roots of the equation x" 1=0, when n is the square

of a prime number p.
Put JP=Z, then xf z=0, and zp 1=0, and let the roots of this last equa-

tion be 1, /3, /J
2
, /3

s
, .... /?P~

I

; then, by substitution,

1 =0,

&C. &c.

Hence the pp values of x, in these p equations, will evidently be all different,

and will be the roots of the equation XPP 1=0.
To determine these roots, it will be sufficient to advert to Art. 300, which

proves that the roots of x* ,3=0 are equal to the roots of x? 1=0 multi-

plied by y/3 ; and, in a similar manner, the roots of x? (3
2=0 are equal to the

roots of X? 1=0, multiplied by V/^ &c. ; therefore, we immediately con-

clude that the roots of

XP 1 =0 are 1, (3, (P, [P /3P-
1

at 0=0 VP, j3 VF, F VP* /
3P
~1 V^9

&c. &c. &c.

For example, let it be required to find the roots of x9 1=0.
The roots of x3 1=0 are

~

_3 1 V 3

hence the roots of x9 1=0 are

-1+J/-3 -l+V-3 -l+V-3
v ?; n v s '

^
' V

--- ---
' * 2

The foregoing propositions have been devoted chiefly to an examination of

the properties and relations of these roots, and not to the actual exhibition of

their values, although, as in the proposition above, one or two examples of the

solution have been given to illustrate the reasoning. To obtain the imaginary-

roots, however, in their simplest form, that is, in the form a-{-b-\/ 1, and

for all values of the exponent, requires the aid of a theorem, borrowed from

the science of Trigonometry.

307. The theorem to which we refer is the well-known formula of De
Moivre, given in most books on Analytical Trigonometry.

(cos aJL sin a . V 1)"= cos nai sin na . */ 1 ;

which, if the arc '2- (- being a semi-circumference, and k any integer) be

substituted for na, becomes
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2&7T 2&7T

(cos i sin . / 1)= cos 2kx sin 2krr . V 1 ;
72- 72-

that is, since

cos 2&:r='l, and sin 2for=0,

,

(cos sin . y !)"= ! ;n n '

so that the expression

2&7T 2&7T
,

cos sin .V-l,

comprehends in it all the n roots of unity, or all the particular values of ar,

which satisfy the equation xa 1= 0.

Although, in this general expression, the value of k is quite arbitrary, yet,

assume it what we will, the expression can never furnish more than n differ-

ent values. These different values will arise from the several substitutions of

0,1, 2, 3....

up to the number -
, inclusively, if n is odd, and up to -, if n is even ; and

f*

for substitutions beyond these limits the preceding results will recur. To

prove this, let us actually substitute as proposed ; we shall thus have the fol

lowing series of results, viz. :

for &=0 .... x= cos i sin . / 1= 1

27T
.

A:= l .... x= cos sin . y 1

47T 4?T .-
k=2 .... x= cos sin . y 1

&=3 .... x= cos i sin . -/ 1

nl (n l)w . (n I)TT
-

^'=~2~
' ' X= C S ~~~ Sm ~^~ * ^~ L

Each of these expressions, except the first, involves two distinct values; so

that, omitting the value given by &=0, there are n 1 values, and, consequent-

ly, altogether, there are n values ; and that they are all different is plain, be-

cause the arcs

27r 47T GTT (n-l)irA _ _ _ J_'

' n ' n ' n ' '

n

being all different, and less than TT, have all different cosines. The arcs which
would arise from continuing the substitutions are

or, wh;ch are the same,

(n I)TT (_ 3)7r (n 5)77
2:r--^-' 27r~ ---

t 2^ --- &c-n w

and the sines and cosines of these are respectively the same as tho sines am
cosines of the arcs
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n n n

which have already occurred.*

If n is an even number, the final substitution for k must be - instead of

, as above ; and, therefore, the final pair of conjugate values for x wiD be

x= cos TTi sin ?r . -J 1= 1,

which values of x differ from all the other values, because in them no arc oc-

curs so great as ?r.

The arcs which would arise from continuing the substitutions beyond

k=- are

(n+2)ir (ra+4)7r (71+6)77
, , , <xc. ;

n n n

or, which are the

(w_ow (n_4)_ (n 6)ir
2rr , 27T -

, 2v- , <5cc.,
n n n

and the sines and cosines of these are respectively the same as the sines and

cosines of the arcs

(n 2)x (n 4)T (n 6

n n n

which have already occurred.*

It is easy to see that in every pair of conjugate roots, each is the reciprocal

of the other. In fact, whatever be k,

2kx 2k- 2t?r 2kir

(cos + sin . -J 1) (cos sin * . y 1)=v n n n n

2k- 2k-
cos- + sin3 =1.

n n

which shows that the two factors in the first member are of the form a, -.
a

We have proved (Art. 304) that every power of an imaginary root of the

binomial equation is also a root ; but, unless n be a prime number, we could

not infer that all the roots would ever be produced by involving any one of

them. Such would not, indeed, be the case. There is always, however,

one among the imaginary roots of which the involution will furnish all the

others; it is the first imaginary root, or that due to the substitution =1, in

the foregoing series of values ; for, by De Moivre's formula, the powers of this

produce all the others, thus :

(cos -4- sin . v 1)
2= cos 4- sin . -J 1

v n ^ n n ^ n

(cos + sin . -/ 1)
3= cos + sin . / 1

v n ' n n ' n

2- 2n- n 1 n 1

(cos -4- sm . -J 1)
2 = cos TT-\- sin . -J 1.

n ' n n n

* The signs of the sines will, however, be different ; but the only effect of this difference

> evidently to furnish each pair of conjugate roots iii an inverse order.
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These powers of the first imaginary root, which wo may call a, thus fur-

nish one half of the entire number of imaginary roots, and the reciprocals of

these being the other half, all of them are determined from the first ;
the

imaginaiy roots are, therefore,

a, a2 , a3
,
.... a*

When n is even, the last power will be

(cos + sin . / l)
2=cos ir-{- sin K . / 1 ;

and the imaginary roots are, therefore,
n

a, a2,
a3

,
.... a2

III i
a' a*' a?'

' ' ' ' n

a*

308. By the general formula (Art. 307), we are enabled to determine all thu

roots of the equation

for, since

cos (2/t+l)7r=: 1, and sin (2fc+l)7r=0,

that formula gives

(cosr-^^.-^ . v-i)-=

cos 2fcl7r sin

hence the n values of x are all comprised in the general expression

2&+1 . 2/t-fl .
-

=. cos-! TTrt sin-! TT . y 1 ;x
n n

which, by putting for k the values 0, 1, 2, 3, &c., in succession, furnishes the

following series of separate values, viz. :

7T 7T

for fc=0 .... x= cos - sin - . v 1
n n

1^ i 3*^^ cos ~i sin v ""!
n n

= cos sin . Vn n

n i
k= -

. = cos TT^ sin IT . -/ 1= 1 ;

or, when n is even,

n 2 / .
T\ .

if . .

::= -
. . . X= COS I"" ~l Sin (7T . y *)

2 \ n/ n

Now that the foregoing system of n roots are all different is obvious, since

TT 3?r 5?r nir if

~, , ....
, or IT -,n n n n n

are all different arcs, of which the greatest does not exceed a semi-circum
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ference. If the preceding series be extended, it win be easy to prove, after

what has been done in Art. 307, that the values formerly obtained will recur.

As in the former case of the general problem, so here, each root may be

derived from the first pair of the series ; thus, denoting the first root, cos

-
jt sin -

. -v/ 1, by a or -, according as the upper or lower sign is taken,

we evidently have, for the preceding series, the following equivalent expres-

sions, viz. :

o,
s
,
a5

,
.... a-

^111 1 when n is odd,

a' a3
'

a5 a" )

and

a, a3
,
a5

, ...... a~~l
-\

111 1 C when n is even.

,
a' a3

'

a5
' " "

a""1 >

For further researches on the theory of binomial equations, the student may
consult Lagrange's Traite de la Resolution des Equations Nnmeriques, Note

14 ; Legendre's Theorie des Nombres*, Part V. ; the Disquisitioues Arith-

meticae of Gauss ; Barlow's Theory of Numbers ; and Ivory's article on Eqna
tions, in the Encyclopaedia Britannica.

309. We have already frequently had occasion to notice multiple values of

radicals, without fixing the precise number which might exist, except for rad-

icals of the second degree. It is time to introduce the following proposition :

Erery radical has as many values as there are units in its index, and has

no more ; in other uxrrds, every quantity has as many roots of a given degree
as there are units in the index of that degree.

If the given radical be represented by the general form VA, this radical

designates evidently all the quantities, real or imaginary, which, raised to the

power m, reproduce A ; consequently they are merely the values of x in the

equation ajn=A. But we know, from the general theory of equations, that

every equation of the m"1

degree has m values of the unknown quantity, which

will each satisfy it ; hence the proposition is proved.

This will serve to explain some paradoxes. Let there be the expression

^V 1- By reducing the second radical to the index 4, it becomes

( 1)
J
, and the given expression reduces to Va, a result which might be

supposed absurd, because, a being positive, the result represents a real quan-

tity. while the proposed expression appears to be imaginary.

There is here a confusion of ideas. If in the expression ^a^J 1 the

radical is an arithmetical determination, it is true that this expression is

imaginary ; but if \Ja be taken in all its generality, and we represent it by a!

multiplied by the four roots of unity, or

a', a', a'\/ 1, a'y 1,

we perceive that some of these values of Va > multiplied by / 1, cause this

imaginary factor to disappear, and the proposed expression becomes real.

I shall terminate this article by the explanation of a paradox which presents
itself in the employment of fractional exponents. Let there be the expres-

.? 2 L
sion a*. If the fraction be simplified, the expression a* becomes a 2

. Then,
in repassing to the radicals, we have ^/a-= V'a. This equality, however, is
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not wholly true, because the first member has four values, and the second

but two.

The difficulty may be presented in a general manner by placing
' mp m
O"P =0,

and in concluding from thence that

T"o""p=V-
To discover the cause of this error, we must remember that the fractional

exponent is but a convention, by means of which we express in another way
that the root of a certain power is to be extracted, and, therefore, this expo-
nent must not be regarded in the light of an ordinary fraction.

THE DETERMINATION OF THE IMAGINARY ROOTS OF EQUATIONS.

310. In what relates to the limits of roots at Art. 283 and following, real roots

only were in view. We shall show here how the limits may be obtained

for the moduli of all roots, whether real or imaginary. Let us consider the

equation

2*+P.r
m- 1+ Q.r

m-3 ... =0 (1)

in which P, Q,. . . may be real or imaginary. In order that a value of x may
be a root, it is necessary that, after having substituted it in the result, the

modulus should be zero.

Call v the modulus of .r, and p, q, . . . those of the coefficients P, Q, . . . Ac-

cording to Art. 239, those of the terms of the equation will be vm , pv
n'~ l

,

qv
m~*

t . . ., and that of the part Pa^-'-f-Q^"
1"2

-}-
. . . can not surpass the sum

pvmi_^_qv
mz

f _ < Then, if we choose for v a value >i such that we have

Vm__p.vm-l_jqVm-2 __0, OT > . . . . (2)

we are sure, by virtue of the article just cited, that the modulus of the first

member of the equation (1) will not be less than the above difference ; and that

from this point the modulus will not be zero, or, what is the same thing, the

value substituted in place of a; will not bo a root of the equation. Every value

of v above 3, will render this difference greater ; then /I is a superior limit of

the moduli.

The quantity ?. will be always easy to determine, because it will be sufficient

to substitute in the difference (2) in place of v, increasing positive values until

this difference becomes positive. If the coefficients P, Q . . . are real, the

moduli p, q, . . . will be these coefficients themselves, but taken positively ; and

if we designate the greatest of these values by N, we can take at once for the

superior limit A=N+1.

To have an inferior limit, we make .r=-, determine in the transformed in TJ

y
the superior limit of the moduli of the roots, and finally divide unity by this

limit.

311. It has already been proved that imaginary roots always enter into

equations in conjugate pairs of the form ai/3-/ 1. And this previous

knowledge of the form which every root must take suggests a method for the

actual determination of the proper numerical values for a and /? in any proposed

case. The method is as follows :

Let *"+ Ari-^-'-f A.r+N=
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be an equation containing imaginary roots; then, by substituting a-\-3^ I

for x, we have

(o+/3 ^
or, by developing the terras by the binomial theorem, and collecting the real

and imaginary quantities separately, we have the form

M+NV 1=0,

an equation which can not exist except under the conditions

M=0, N=0 ............ (1)

From these two equations, therefore, in which M, N contain only the quan-
tities c, 3, combined with the given coefficients, all the systems of values of a

and fi may be determined ; and these, substituted in the expression a+/3 V li

will make known all the imaginary roots of the proposed equation ; those that

are real corresponding to /3=0.

It is obvious from the theory of elimination as developed at page 157, and

from the method of numerical solution explained in Art. 255, that the labor of

deducing from this pair of equations the final equation involving only one of the

unknowns a, /?, and of afterward solving the equation for that unknown, will

in general be very laborious for equations above the third degree. Lagrange,

by combining with the principle of this solution the method of the squares of

the differences explained at Art. 278, avoids both the elimination and subse-

quent solution here spoken of. It is easy to see how this may be brought
about if we have any independent means of determining one of the unknowns

j3 : for the adoption of these means would enable us to dispense with the elimi-

nation ; aud as the substitution of the value of /3 in both of the equations (1)

would convert those equations into two simultaneous equations involving but

one unknown quantity, their first members would necessarily have a common
factor of the first degree in a, which, equated to zero, would furnish for a the

proper value to accompany j3 ; and thus, instead of solving the final equation

referred to, we should only have to find the common measure between the

two polynomials 31, N containing the unknown quantity a.

Now corresponding to every pair of imaginary roots a+,3 -/ 1, a 3 / 1,

there necessarily exists, in the equation of the squares of the differences, a

real negative root 4,?
3

; so that if all the negative roots of the latter equation
be found, the quantity 4.3

s must appear among them ; from which the value

of /3 would be immediately obtained, and thence, by aid of the common meas-

ure as just explained, the corresponding value of a.

But the equation of the squares of the differences may have a greater num-
ber of negative roots than there are pairs of imaginary roots in the proposed ;

which, however, can not happen except two non-conjugate imaginary roots have

equal real parts, or except a real Toot be equal to the real part of an imaginary
root. Lagrange discusses these peculiarities, and establishes the exactness

and generality of the principle in question, as follows :

When the real parts, a, 7, &c., of the imaginaries

&c. 6cc.

are unequal, as well when compared with one another as when compared with

the real roots a, 6, c, &c., it is evident that the equation of the squares of the

BB
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differences can not have any other negative roots than those furnished by the

several pairs of conjugate imaginary roots, and which are

_4/32
,
_4 (52

5 &c .

All the other roots, not arising from the differences furnished by the real

roots, a, 6, c, &c., will evidently be imaginary ; those between the real and

imaginary roots supplying the forms

(a &+ /3-V/ I)
2

, (a ft /?V I)
2

&c. &c.

and those between the non-conjugate roots the forms

so that in this case every negative root in the auxiliary equation will indicate a

pair of imaginary roots in the proposed, and will, moreover, supply the value

of the imaginary part. But if it happen that among the quantities a, y, &c.,

there be found any equal among themselves, or equal to any of the quantities

a, b, c, &c., then the auxiliary equation will necessarily have negative roots,

corresponding to which there can be no imaginary pair in the proposed equa-
tion.

For let a=a, then the two imaginary roots (a a-\-j3 ^ I)
2
, (a a /3

/ I)
2 will become ft* and .S

2
, and, consequently, real and negative ; so

that if the proposed equation contain only two imaginary roots, a-^-p -y/ 1 and

a j3 \/ 1, then, in the case of a=a, the equation of the squares of the differ-

ences will contain, besides the real negative root 4,5
s

, the two /?
2
, [P,

both negative and equal.

We thus see that when the equation of the squares of the differences has

three negative roots, of which two are equal to one another, the proposed may
have either three pairs of imaginary roots, or but a single pair.

If the proposed contains four imaginary roots, a-|-j9V 1, a /? / 1,

y+d-V
7

1, 7 (5\/ 1, then the equation of the squares of the differences

must contain the two negative roots 4(P and 4(5*; if a=a, it must also

contain the two equal negative roots /J
2

, /?* ; and if, moreover, y=b, it

must contain, in addition to these, the negative pair c5
2

,
<5
2

; and lastly, if

rt=y, the four imaginary roots

<5)/3lp, (- 7)- (|9-cJ)V'
will be converted into the two negative pairs

Hence we may deduce the following conclusions, viz. :

(1) When all the real negative roots of the equation of the squares of the

differences are unequal, then the proposed will necessarily have so many pairs

of imaginary roots.

If in this case we call any one of these negative roots w, we shall have

0=-- ;
and if this value be substituted for /3 in the two equations (1), and the

**

operation for the common measure of their first members be carried on till we
arrive at a remainder of the first degree in r?, the proper value of a will be ob
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tained by equating this remainder to zero. Thus, each negative root, w,

will furnish two conjugate imaginary roots, +/3 -y/ 1, and a /? / 1.

(2) Ifamong the negative roots ofthe equation of the squares of the differences

equal roots are found, then each unequal root, if any such occur, will, as in

the preceding case, always furnish a pair of imaginary roots. Each pair of

equal roots may, however, give either two pairs of imaginary roots or no im-

aginary roots, so that two equal roots will give either four imaginary roots or

none ; three equal roots will give either six imaginary roots or two ; four equal

roots will give either eight imaginary roots, or four, or none ; and so on.

Suppose two of the negative roots, w, w, are equal; then putting, as

\/w
above, /?= r , we shall substitute this value of j3 in the two polynomials (1),m

and shall carry on the process for the common measure between these poly-

nomials till we arrive at a remainder of the second degree in a ; since the poly-
nomials must have a common divisor of the second degree in a, seeing that the

equations (1) must have two roots in common, on account of the double value

of/3.

Equating, then, this quadratic remainder to zero, we shall be furnished with

two values for a : these may be either both real or both imaginary. In the

former case call the two values o' and o" ; we shall then have the four imagin-

ary roots

1, a' /3-/ 1, a"-f 3-/ 1, o",3-/ 1.

In the second case, the values of a being imaginary, contrary to the condi-

tions by which the fundamental equations (1) are governed, we infer that to

the equal negative roots tc, ?, there can not correspond any imaginary
roots in the proposed equation.

If the equation of the squares of the differences have three equal negative

^'w
roots, w, ?, w, then, putting, as before,/?=, we should operate on

it

the polynomials (1), for the common measure, till we reach a remainder of

the third degree in a; this remainder, equated to zero, will furnish three values

of a, which will either be all real, or one real and two imaginary. In the first

case six imaginary roots will be implied : in the second only two ; the imagin-

ary values of a being always rejected, as not coming within the conditions im-

plied in (1).

It follows from the above, and from what has been established in Art. 259,

that there are at least as many variations of sign in the equation of the squares

of differences as there are combinations of two real roots in the proposed

equation. Also, it must have at least as many permanences of sign as there

are pairs of conjugate imaginary roots in the proposed equation; or, in other

words, it can not have a less number of permanences of sign than half the num-

ber of imaginary roots in the proposed equation.

Hence we may infer, that if the equation of the squares of the differences

have its terms alternately positive and negative, there can be no imaginary
root in the proposed equation.

The foregoing principles are theoretically correct ; but the practical appli-

cation of them, beyond equations of the third and fourth degrees, is too labo-

rious for them to become available in actual computation. We give the follow-

ing illustration of them from Lagrange.
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312. To determine the imaginary roots of the equation
x3 2x 5=0.

Computing the equation of the squares of the differences from the general
formula for the third degree at Art. 279, viz.,

in whichp= 2 and q= 5, we have

z3 12z2+36z+643=0.
In order to determine the negative roots of this equation, change the alternate

signs, or put z= w, and then change all the signs, converting the equation
into

w^4- 12M>3+ 3630643=0,
and seek the positive root, which is found by trial to lie between 5 and 6.

Adopting Lagrange's development, Art. 297, this root proves to be

" 5+
*+Li

"^6+, &c.,

from which we get the converging fractions (see Continued Fractions)

31 160 991
5 ' T* If 192'

&C '

Knowing thus an approximate value of w, we know /?=-.

In order now to get the equations (1), p. 385, substitute a+/i? V 1 for x in

the proposed equation, and form two equations, one with the real terms of

the result, the other with the imaginary terms ; we shall thus have the equa-
tions (1) referred to, viz.,

a 5=0

in which /J is known.

Seeking now the greatest common .measure of the first members of these

equations, stopping the operation at the remainder of the first degree in a, and

equating that remainder to zero, we have

15

nnd thus both a and j3 are determined in approximate numbers.

313. There is another method of proceeding for the determination of im-

aginary roots, somewhat different from the preceding, being independent of

the equation of the squares of the differences. It is suggested from the fol-

lowing considerations :

Since the quadratic, involving a pair of imaginary conjugate I'oots, is always
of the form

every equation into which such roots enter must always be accurately divisible

by a quadratic divisor of this form
; that is, the proper values of a and ft are

such that the remainder of the first degree in x, resulting from the division,

must 1)6 zero. This furnishes a condition from which those proper values of

a and /3 may be determined ; the condition, namely, that the remainder spoken
of. Ax B, must be equal to zero, independent of particular values of .r ; and

this implies the twofold condition
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A= 0, B=0,
from which a and /3, of which A and B are functions, may be determined.

As an example, let the equation proposed be

X4_j_

Dividing the first member by

we have for quotient

and for the remainder of the first degree in x

(4 4- 12a+ 12a2
-f- 40

3
400

s
4/3)x

which, being equal to zero whatever be the vahie of x, furnishes the two equa-

tions

-f 12o
s
-f 4a

3 40^ 4^=0

and this, substituted in the second, gives

4a4+16a3
-}-24a

3+16a=0,
two roots of which are and 2 ; the other two are imaginary, and must,

consequently, be rejected as contrary to the hypothesis as to the form of the

indeterminate quadratic divisor.

The two real values of a, substituted in the expression above for /?*, give

fora= 0, 0=1* .-. /3=+ l

a=-2,-^=(-l)3... = _!

and, consequently, the component factors of the original quadratic divisor, viz.,

the factors

xa /3 V 1, x a-f /? *J 1,

furnish these two pairs of imaginary roots, viz.,

x=,/~^i, x=-vI=l
and

x= 2 V 1, *= 2+ V 1-

This irethod, like that before given, is impracticable beyond very narrow

limits, because of the high degree to which the final equation in a usually

rises. And it is further to be observed of both, and, indeed, of all methods

for determining imaginary roots by aid of the real roots of certain numerical

equations, that whenever, as is usual, these real roots are obtained only ap-

proximately, our results may, under peculiar circumstances, be erroneous.

For instance, in the two methods just explained we have two equations,

/(a)= 0, F(t?)=0, where the coefficients of a in the first are functions of /?,

and the coefficients of 3 in the second functions of a
; hence, whichever of

these symbols be computed approximately, in order to furnish determinate

values for the coefficients of the other, these coefficients must vary slightly

from the true coefficients ; and, consequently, under this slight variation of the

coefficients, real roots may become converted into imaginary, and imaginary
into real.
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The terms imaginary and impossible have been thought objectionable when

applied to the roots of equations, inasmuch as definite algebraic expressions
are always possible for these roots.

A specimen of a strictly impossible equation would be the following :

2.r 5+ Vx2 7=0,

when plus before the sign -y/ implies the positive root i/x
3 7. No ex-

pression, either real or imaginary, can satisfy the condition or represent a root

of this irrational equation.

The terms imaginary and impossible, when used, should be understood

rather as applying to the solutions of the problem from which the equation is

derived than to the expressions for the roots. The number of solutions which
the problem admits will ordinarily be expressed by the degree of the equa-

tion, but certain suppositions affecting the values or signs of the coefficients

may cause some of these solutions to become absurd or impossible, and these

will be indicated by the form a-j-6 \/ 1 for the roots.in which b is not zero.

THEORY OF VANISHING FRACTIONS.

314. From the principles established in (Art. 253), we readily derive the

following consequences, viz. :

Since

f(x)=(xa l}(xa2)(xas)(xa4 )

and

/j(x)= (.r a )(xa2)(xas ) \-(x ai)(x a2)(x a4 )
. . . +, &c.,

it follows that

fi(x) 1111/1V '
i

[
_i /i\

f(x)
*

x a4 x as 'x a2 x i

In like manner, for any other equation F(.r)=0, we have

F.r 1111
+ + ('

Suppose the two equations

f(x\ F(x\JW u r
v-
6
^

u

have a root in common, viz., a l
= b i1 then, dividing (1) by (2), we have

fi(x) F(x)
'

r_ a4+^Z^+z_ a>+,r_ ai

*' i > \ '
f

I I I

x 64
'

a: 63
' x b3

' x bi

Hence, multiplying numerator and denominator of the second member by
x CD and then substituting for x its value x=a^ we have

/!(!)

from which we learn, that if any two equations have a common root a, and

their derived equations be taken, the ratio of the original polynomials, when a

is put for x, will be equal to the ratio of the derived polynomials when a is put

for x.

This property furnishes us with a ready method of determining the value
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of a fraction, such as rv~T> when both numerator and denominator vanish for

a particular value of x, as, for instance, for x=a. For we shall merely have

to replace the polynomials in numerator and denominator by their derived

polynomials, and then make the substitution of a for x. If, however, the

teruis of the new fraction should also vanish for this value of x, we must treat

it as we did the original, and so on, till we arrive at a fraction of which the

terms do not vanish for the proposed value of x. The following examples wil1

sufficiently illustrate this method :

(1) Required the value of

when x=a.

fi(a) 2a
Here ~-r := =2a, the required value

(2) Required the value of

(I-*)
2

when x=l.

-2(1-*)
o

This still becomes - for x=l,

n*(n-r-l):r
a- 1

n(ra-f l)(n I)*"-*

F s(*)~ 2

the value sought.

(3) Required the value of

1x'
when z=l.

/.(I) -n
f\(i)

=^i-
(4) Required the value of

b(a T/OX)

for x=a.

We may here put i/x=y, and thus change the fraction into

i
l(a a-y)

ay*
i i

r '' -^-=0' the "to* required.~

* This is the expression for the sum of n terms of the series

-, &c.
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(5) Required the value of

f(y). (+*)" (

x-y
when x=y.
Put a-\-y=z", then the fraction is changed into

"i

(a-\-x)
n zm

x zn
-|-a

fi(z) mzm~l m zm m (a-\-y}
'

FI(Z) nza~l n
'

z n n
'

a-\-y

and, therefore, the value, when x=y, is

ELIMINATION. .

RESOLUTION OP EQUATIONS CONTAINING TWO OR MORE UNKNOWN
QUANTITIES OF ANY DEGREE WHATEVER.

315. WE have already indicated, at p. 157, the possibility of eliminating one

of two unknown quantities from two equations by the method of the common
divisor. The general theory of equations which has since been unfolded will

afford the means of giving a more full development to this subject.

The two given equations may be thus expressed :

F(x,y)=0,f(x,y)=0 (1)

They are said to be compatible if they have common values of x and y. This

is the case with two equations derived from the same problem, the conditions

of which, for the determination of the required quantities, are expressed by
the two given equations.

Suppose now that one of the common values of y were known, and substi-

tuted for y in the two equations (1), the first members of both would become

functions of .r, and known quantities ; the common value of x, corresponding to

this value of y, must have the property of every root of an equation pointed

out at Prop. II. of Art. 238 ; that is to say, if a denote this value of x, each

of the equations (1) must be divisible by (x a); in other words, they must

have a common divisor containing x. If, therefore, without knowing and sub-

stituting the value of
i/, we proceed with the two given equations (1), accord-

ing to the method for finding the greatest common divisor, until we arrive at a

divisor of the first degree with respect to x, and to a remainder independent
of x, or containing only y, as this remainder would have been zero if the value

of y had occupied its place during the process, the value of y ought to be such

as to reduce this remainder to zero. The values of y which will do this are

found by putting this last remainder equal to zero, and thus forming what is

called the final equation in y only. The values of y which satisfy the final

equation are the only compatible values of this unknown in the two given equa-

tions (1). The corresponding values of x are found by substituting these

values of y successively in the last divisor, which will ordinarily be of the first
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degree with respect to x. and setting this equal to zero ; each value of y gives,

by means of this divisor, the corresponding value of x, which, substituted with

it in the given equations, will satisfy them. Should this divisor reduce to zero

by the substitution of the value of y, we must go back to the previous one of

the second degree, which, put equal to zero, will furnish two values of x for

each of y ; if this reduce to 0, we must go to that of the 3 degree, and so on.

316. This conclusion may be arrived at in another manner. Denoting by

A=0, for simplicity, the first of the two given equations F(x, y)=0, and by
B=0 the second /(x, y)=0, by Q the quotient ofA by B, and by R the re-

mainder, we have

A=BQ+R (2)

It follows from this equality that all the values of the unknown quantities x

and y, which give A=0 and B=0, must also give R=0, since the quotient

Q can not become infinite for finite values of x and y, the given equations be-

ing supposed to be entireufunctions, or capable of being rendered such with

respect to x and y. (See Art. 275, Cor. 2.)

For the same reason, all the values which will give B=0 and R=0, will

also give A=0. The system of equations A=0, B=0 may, therefore, be

replaced by the more simple system B=0, R=0.
If now B be divided by R, and a new remainder, R', be reached, it may be

shown in a similar manner that the system B=0, R=0 can be replaced by
the system R=0, R'=0, R' being of a lower degree with respect to x than

R, and so on, till we arrive at a remainder independent of a:. Let R" be this

remainder. Then the original equations are replaced by the system R'=0,
R"=0, in which R"=0 is the final equation in y only, and R' generally of

the 1 degree with respect to x.

317. The same conclusion could not have been arrived at had y been sup-

posed to enter into any of the denominators in the above process. Suppose,
for instance, that Q in equation (2) contained denominators functions of y,

then Q might possibly become infinite by the values of y reducing these de-

nominators to zero, and BQ thus might be finite (see Art. 156, 3), though B
were zero.

318. If, in order to prevent the occurrence of y in the denominator of the

quotient when affecting the division of A by B, it had been necessary to mul-

tiply the polynomial A by some function of y, foreign roots might thus be in-

troduced, not belonging to the proposed equation. For, call c this function,

and represent by Q still the quotient obtained after this preparation, and by R
the remainder, we shall have

cA=BQ+R.
This equality proves that the solutions of the equations B= 0, R=0 are the

same as those of the equations cA=0, B=0. But this last system divides

itself into two others, A=0, B= 0, and c=0, B=0, consequently the equa-
tions B=0, R=0 will admit all the solutions of the proposed equations ; but

they will admit, also, all those of the equations <r=0. B=0, which can not be-

long to the equation A=0. The same may be shown for any foreign factor

necessary to be introduced to effect any subsequent division.

On the other hand, factors are sometimes suppressed for convenience in the

process for finding the common divisor. If these factors were such as would

reduce to zero on attributing to y its proper values, the process ought to ter
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mmate, since the whole remainder becomes zero with ono of its factors, and

the preceding divisor would be a common measure of the two polynomials ;

and yet these values of y which produce this common measure would not

have been presented by the final equation arrived at had the factor in question

been suppressed without notice.

From the foregoing considerations we see that, to obtain the values of y
which belong to the proposed -equations, we must equate to zero the remain-

der which is independent of x, as also each of the factors in y which have

been suppressed in the course of the operatioo, and resolve each equation

separately ; secondly, that among the values thus obtained there may be some

which, on trial in the proposed equations, prove extraneous, and which must,

therefore, be rejected.

319. Simplifications may sometimes be employed, the nature of which is

explained conveniently by the aid of symbols, as follows : Let the polynomials
A and B, the first members of the given equations, be put under the form

A.=dd'd"uu'u", ^=dd'd"vv'v",

in which d represents a common divisor of A and B, containing x only ; d'

another, containing y only ; and d" a third, containing both x and y. The
other factors, u, u', u", v, v', v'', have a similar meaning, except that they are

not common to the two polynomials A and B. The proposed equations may
be satisfied by placing dQ ; this equation contains only x, and, when re-

solved, furnishes a limited number of values of this unknown quantity, to

which may be joined any value whatever of y, and the given equations A=0
and B= will be satisfied. Again, d'=0 will satisfy them, which gives simi-

larly limited values for y, unlimited for x. Finally, suppose d"=.Q ; as d"

contains both x and y, an arbitrary value may be given to one of the unknown

quantities, and this equation will make known a corresponding one for the

other.

The other modes of satisfying the given equations consist in equating to

zero simultaneously one of the factors u, u', u" of the first, and one v, v', or

v", of the other. But v and u can not be simultaneously equal to zero, since

they each contain only x, and are supposed to have no common divisor, d having

been understood to comprise all the common factors depending on x alone.

For a similar reason, u' and v' functions of y alone can not at the same time be

equal to zero. But u" and v", being put equal to zero, are to be proceeded

with by the method of the common divisor, as already explained, and will fur-

nish a limited number of values for
?/,

and corresponding values limited also

for x.

320. Should the remainder, in seeking for a common divisor, not contain y,

but only known quantities, it could not be put equal to zero. In this case the

given equations would be incompatible.

EXAMPLES.

(1) Let the equations be

There are numerous simplifications of these, for they can be decomposed into

factors like the following :
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Equating to zero first the common factors, each in its turn, we obtain

J y=0, < y indet, < y indet.,

\ x indet.. \ x=l, \ x= y ;

next equating to zero the other factors, we have four systems of equations, viz.,

First system < ^T _Q
whence

Second system ^Coy_ 1_ ^

whence
j JllJ

j JZ-!Ll.

Third system
j

*
T^ 110 (

whence 5^_ L
< x= 1

Fourth system ~f = * whence 5 ?=1+^ _ c y=l+ V*
2y-l=0 S < x= (1+ V'2) ) r=(l- v/2)

~ = _
v/2)

In the first three systems, all the solutions, except x= 1, y= 1, hare

already been found; in the fourth, those in which we have x= y are also

already known ; hence, hi reality, we have only determined three new solu-

tions, viz.,

cy=-l cy=l
lx= 1, }:r=l

(2) To resolve the two equations

a:
3

2yx +y-y=0.
These equations can not be decomposed into factors ; hence we pass imme-

diately to successive divisions. This remark will apply also to equations 3 and 4.

First Division.

xy

x 2y

Second IHvision.

y x-2y

U- y-

Hence, the final equations are x 2j/=0, y- y=0. We deduce from
these

and as we have neither introduced nor suppressed any factor, these two solu-

tions are those of the proposed equations themselves.

(3) To resolve the twa equations,

(y I)z
2+2r 5y+3=0,

yx
a+9x10y=Q.
First Division.

(yl) a^-j-Sx by +3
(yI)yx*+2yx5y-+3y

lOy

yl
-

7y.
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As we have multiplied by y, it is necessary to resolve the equations y=Q,
<jx~-\-9x 10?/=0, which give .r=0, y=Q, and to examine whether these

values make the dividend equal to zero. As this is not the case, it follows that

they form a foreign solution, which it will be necessaiy to suppress.

Second Division.

yx*-\-9xIQy ( 77/+9).r+5?/
2

7y

5#
3+ 7y'

z 6

632/4-81)( 7i/4-9).r 490/+1260/ 810y

f 63T/+ 81)( 7y+9)x 25y
5+7Qy4

3647/3-J-8467/
3

567y

257/
5

707/
4

1267/
3
4-414y

2
243t/.

The equations which it is necessary to resolve are

(7y+9)x+5y* 7y=0,

2oy
5

707/
4

I26y
3
+414y* 243y=Q.

The second gives the results, which may be readily verified,

By substituting these values in the first of the given equations,' we obtain for

x the corresponding values x=Q, ar=l, rr=2, x= 5^ -/10.

In the second division we have been compelled to multiply by 7y-{-9, but

no foreign solution has been introduced.

We have, then, only to suppress, in the five solutions above, that which has

been introduced by the first division. There remain, then, for the given equa-

tions the four following solutions :

( _3_|_3 ./10 r 33 -/10
<i/=l C^=3 >v=-r- Jjrsa

- --ill=2 ' lx= 5

(4) Let the equations be

Division.

/ 12)o:

This remainder can be decomposed into the factors I2(y l)(a: 1); the

calculations will be simplified, and we shall have these two systems of equa-
tions :

1= <.r 1=

Each of these can be at once resolved, and we find

I z=3, I x=2, I x=l, (. x=l.

(5) rJ+2^+27/(y 2).r+/-_4=0.
0. .

Ans. . _
.r= I, ( x= o
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fx 6yx x-f-y
3

3y- y-|-3=0.

First system \
( 1= 0, ( X:=2, t X= 2.

Ans. Second system
*=2 *=

X=l, <X= 1, lx= l, tx=l.
Thu-d system 5 ^

(7)

The first division gives the remainder

To be able to perform the second division, we multiply the dividend by y ,

in the same way we prepare the first remainder to be divided. We tbus ar-

rive at a remainder of the first degree in x, which can be put under the form

Dividing, then, the remainder of the second degree by x y, we obtain the

quotient

and there is no remainder.

From these calculations we conclude that the first members of the proposed

equations are divisible by x y, so that they can be verified by all the solutions

of the indeterminate equation x y=0. The other solutions are furnished

by the system of two equations,

^+3^+2=0, yx+y'+3y+4=0;
hence we obtain tl e solutions

y=-l, r=+2; y=-2, r=+ l.

METHOD OF LABATIE.

321. Having thus stated the principles on which the ordinary method of

elimination depends, we shall now proceed to show how this method has

lately been perfected by Labatie and Sarrus. By the aid of the theory which

they have introduced, we shall be able to perform the required eliminations

without introducing any foreign solutions.

Suppose that A and B represent the quotients which we obtain by dividing

the first members of the given equations by all of then- factors which depend

only on y.

Let c be the factor by which it is necessary to multiply A, in order that we
may be able to divide it by B ; represent by q the quotient that we obtain in

this division, and by Rr the remainder, r designating those factors of this re-

mainder that are not dependent on x. Let Ci be the factor by which we
must multiply B to render it divisible by R ; represent by qi the quotient, and

by Rin the quotient that we obtain in this second division, r
t designating the

product of those factors of this remainder which do not depend on z, and so

on. Finally, suppose, for the sake of simplicity, that at the fourth division

we obtain a remainder independent of x, and designate this remainder by TJ.

We have the equalities
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Cc A =B q +Rr
] c,B =Rg1 -fR,r1

J

CaRrsR'
(_ c3R 2

=R
Let d be the greatest common divisor of c and r, ^ the greatest common

divisor of -r and TI, dz that of rj- and r2 , d3 that of , , y and r3 . We shall

proceed to prove that we can obtain all the solutions of the system A=0,
B= 0, without any foreign solution, by resolving the following systems :

( f ( f\ ( 7*2 C TS

)-7=0 ) T=0 )-r =0 )T= (2^
j j i j

a 3 j
a3

(B=O, (R=O, (RI= O, tR,=o
To establish this proposition, we shall first prove that the solutions of the

systems (2) all agree with those of the system A= 0, B=0; we shall after-

ward show that the solutions of the system A=0, B= 0, are all comprised in

those of the systems (2).

[a] Dividing by d the two members of the first equation of system (1), it

becomes

j is entire, for c and r, by hypothesis, are divisible by d ; hence, qB is divisible

by d ; but B, by hypothesis, is prime with respect to d ; therefore, d divides q.

Equation (3) shows that the values of x and y, which satisfy the equations

T c c r

B=0, -1=0, destroy also -jA; but -j and -5 are prime with respect to each
v

other. Consequently, 1, all the solutions of the system B=0, ^=0, agree with

those of the system A=0, B=0.

[&] To obtain a relation between A, R, and -7-, we multiply equation (3) by
a\

cl5 and in the resulting equations place, instead of C[B, its value as found in the

second member of the second equation of system (1) ; we thus obtain

CCi

d

The quantity
-

, is entire, because r and q are divisible by d ; more-
en

cc\

over, this quantity is divisible by d\. ; for di divides
-j

and rM and it is prime

with respect to R. Dividing the two members of the above equation by d\,

q c\r -\-QQ\
and taking, to abridge, -3=M, -7-7 = Mi, it becomes

(Jj ft (/ -I

(4)

To obtain a relation between B, R, and -r, we first multiply the second

equation of system (1) by ^,
which gives -^B

=
-J-'R+

jRi?V Since - and
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TI are, by hypothesis, divisible by di, it follows that di divides also r-R ; but

cQi
di is prime with respect to R ; hence, d\ divides r. Dividing aH the terms of

c cqi
the equation by di, and taking, to abridge, -j=N, -jr =Ni, it Incomes

d uU'i

^-B=N1R+NR1^ . . ........ (5)

Equations (4) and (5) prove that all the values of x and y, which reduce the

TI CCi CCi CCi TI

polynomials R and -y to zero, destroy also -VrA and TT-B ; but -j-r and -r-

i aa\ adi ad\ a t

are prime with respect to each other ; consequently, 2, all the solutions of

the system R=0, ^~=0, agree with those of the given system, A=0, B=0.

[c] We obtain a relation between A, Rl5 and -r, by multiplying equation (4)

by c-2 , and placing, instead of CjR, its value found in the second member of the

third equation of system (1); we thus find

2 +M1R3r8 .

By hypothesis, d3 divides the first member of this equation, it also divides r, ;

it ought, then, to divide Rjf M^-j-Mcj-rJ ; but Rt and d% are prime with re-

spect to each other ; d? then divides the term by which Rt in the above equa-
tion is multiplied. Designating the quotient by M3 the equation becomes

(6)

Multiplying equation (5) by c.2 , and then placing, instead of CjR, its value

found in the second member of the third equation of system (1), it becomes

We can demonstrate as before that the multiplier of Rt is divisible by
and, representing the quotient by Nj, we find

(7)

Equations (6) and (7) show that all the values of x and y, which reduce the

polynomials R t
and -r to zero, destroy also the first members of these two

equations ; but , , ", and
-j

are prime with respect to each other ; conse-

quently. 3, all the solutions of the system R t=0, j~=0, suit those of the pro-

posed system, A=0, B=0.

[d] The equation which gives a relation between A, R2 , and -=-, can be ob-

tained by multiplying equation (6) by c3, and placing, instead of c3Rj, its value

as given in the second member of the fourth equation of system (1) ; we thus

find
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Dividing the two members of this equation by d3 , and designating by Ms the quo-

r<i

tient obtained by dividing the entire polynomial Ms^-j-CsMi-r- oy <4 there
da

results

rs
To obtain a relation between B, R2 ,

and -y-, we multiply equation (7) by c3 ,

3

and put in the place of c3R! the second member of the fourth equation of the

system (1), which gives

^j+N3r3 .

Dividing both members by ds , and designating by N3 the quotient obtained

by dividing the entire polynomial N2 <73+c3Ni-7- by < 3, it becomes

(9)

Equations (8) and (9) show that all the values of x and y, which reduce tne

7-3

polynomials R3 and
-j- to zero, destroy also the first members of those

- 7*3

tions ; but , , , , and -7- are prime with rfcspect to each other ; consequent-

ly, 4, all the solutions of the system R3=0, ^-=0 concur until those of the.

(ty

proposed system, A=0, B=0.

(II.) It remains still to be proved that any system whatsoever of values

which satisfy the equations A=0, B= 0, is apart of the systems of values

whichfurnish equations (2).

To form the equations which demonstrate this second part of the theorem,

C Q
let us first place in equation (3) N instead of -5, and M instead of -5 ; it will

become, transposing the term MB,

NA MB=R
5 (10)

Eliminate now R between equations (4) and (5). We can eflect this elim-

ination by subtracting one of these equations from the other, after we have

multiplied the first by Nn the second by MI, remembering the values previ

ously given to Ni and M t ; but the calculations will be simpler if we multiply

equation (4) by B and equation (5) by A. Subtracting the two resulting equa-
tions the one from the other, we find

(M,B-N 1A)R+(MB NA)R,5-= 0.

di

Placing instead of MB NA its value previously determined, R-j,
and

suppressing the factor R,, this equation becomes

N.A-M^-R.- .... (11)
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Finally, we eliminate R! between equations (6) and (7). To do this, mul-

tiply equation (6) by B and equation (7) by A ; then subtract the one of the

resulting equations from the other, we thus obtain

(M2B N,A)R,+ (M 1B N1A)R15= -

3

Placing in this equation, instead of M^B NiA, its value, determined in (11),

R,-Tjr, and suppressing the factor R15 it becomes
ddi

(12)

In the same manner we obtain the equation

. M,B=

Equation 13 shows that every system of values of x and y which gives

A=0, B=0, ought also to satisfy the equation

r_ rj_r^ r^_
d d\ d-2 ds

an equation which requires that one of its factors equal zero, whence it fol-

lows that the equations

r TI r r3

d^d^J^d,^
give all the correct values of y.

This being established, let z=a, y=/3 be a system of correct values of the

equations A=0, B=0.
T

If the value t/=,3 is a root of the equation -7=0, it is clear that the system

x=a, y=fl will be a solution of the system B=0, "3=0.

If the value y=.$ does not verify the equation -j=0, and if it is a root of

the equation -r=0, we perceive, by equation '(10), that the system x=a,
a\

y=,3 will give R=0 ; consequently, it will be a solution of the system R=0,

=
'

.

r
If the value j/=/3 verifies neither the equation -j=0 nor the equation -r-=0,

r3
and is a root of the equation r=0, we see, by equation (11), that the system

r=a, y=8 will give Rt=0 ; consequently, it will be a solution of the system

R1= 0, ~0.

It' the value y=fi does not verify any one of the equations ->=0, ^-=0,a a t

'fZ r3
j=0, and is a root of the equation -r=0, we see by equation (12) that the
MS 3

system x=a, y=@, will give Ra=0 ; consequently, it will be a solution of the

system R ;=0, ;r=0.

Cc
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Hence, all tfie systems of values which satisfy the equations A=0, B= 0,

form part of the values whichfurnish equations (2).

The equation -j . -r . -r . -7= 0, which gives all the correct values of v is
a ! a.2 a3

called the final equation in y.

REMARKS ON THE PRECEDING METHOD.

It may chance that in one of the equations of system (2), for example, -r
CL\

=0, R=0, a value of y, derived from the first equation, destroys some of the

coefficients of the powers of x in the second equation, after the highest power
of x ; in this case we only obtain a number of values of x inferior to the de-

gree of the equation 11=0 ; and if the substitution of the value of y should

destroy all the multipliers of the powers of x in R, the equation R=0 would

not give any value of x. In fact, it can be proved, by a method similar to that

which we have employed with reference to the general equation of the second

degree (Art. 191), that if in an equation of the form Sa;n -f-Hx
n~1

-j-Kx
n-3

-{-... =0, we suppose that the quantities which enter into the coefficients

S, H, K, Arc., are of such a nature that we have S=0, H=0, &c., the equation

has infinite roots equal in number to the consecutive coefficients which are re-

duced to zero. But it should be remarked that the theory by which we have

proved that the solutions of systems (2) are the same with those of the system

A=0, B=0, only applies to solutions expressed by finite values of x and y,

To prove that the solutions of systems (2), in which the value of x is in-

finity, also suit the proposed equations A=0, B=0, suppose that 2/=/3, veri-

fying the equation -7-=0, causes one or more of the multipliers of the higher
a\

powers of a: in R to vanish. If, in the two members of the equality (4) we

make y=P, the term MRi-r- will be reduced to zero, and the degree of the
MI

term MiR will be lowered with respect to x one or more units.

Again, we can not suppose that the terms of MjR, which are reduced to

zero, have been destroyed, until we have made y=p in the terms
|

because the degrees of A, B, R, RI, &c., are decreasing, and we see without

difficulty, from the relations which exist between M, MH M8 , &c., that the

degrees of these quantities with respect to x go on increasing. It will bo

necessary, then, in order that y may have the value /?, that the degree of -77-A
UUi

with respect to x be lowered as many units as the degree of R is lowered.

We can prove, in the same manner, that the value y=P ought also to cause

one or more of the coefficients of the higher powers of a: in B to vanish. The

equations A=0, B= will give then for y=P one or more infinite values of a:.

As to the reciprocal proposition, that the solutions of the equations A=0,
B=0, in which x is infinite, ought to be found among the solutions of systems

(2), it is not the fact, as will be seen in the second example following.

EXAMPLE I.

(y-l)a*+y(y+l)x
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The first division gives at once the remainder (y l)z-j-2y; taking this re-

mainder for a divisor, \ve obtain, without any preparation, the remainder y
3 1.

We shall obtain then all the solutions of the proposed system by resolving the

equations

The first equation gives y=il. For the value y= 1 we find x= 1,

and this system will satisfy the proposed equations. For the value y=-\-l
we find T=X. This system, also, wiD satisfy the proposed equations; for

dividing each of these equations by the highest power of x, and taking r=oo,
the two equations will be reduced to y 1=0.

EXAMPLE II.

(y i)z*+yz+y
3

2y=o,
(y-l)z+y=0.

The division gives the remainder y
2 2i/=0 ; the solutions, therefore, of the

proposed equations depend on the system

j/* 2y=0, (y l)z+y=0.
These equations give the two systems

y=0, ar=0; y=2, x-= 2.

But the proposed equations possess, besides, another solution, y=l, z=or,
since the value y=l causes the multiplier of the highest power of x in each

of these equations to vanish.

322. The following method of elimination avoids the introduction of foreign

roots, and enables us to determine the degree of the final equation :

Let equation A or a^+Pz^-'+Qx-3 ..... +Tr+V be supposed equal to

(x o)(z'
n-1

4-Aa^-
3+Bx-3+, &c.) . . . . C;

and equation B or x"-$-P'x^+Q'z
-3

. . . + T'x-fV to

(x a)(x
n-1 -

r-A'x
n-3+B'xn-3+, &c.) . . . . D;

also, let equation A be multiplied by xn~ 1
-|-A'x"~

2
-|-B'z

n~3
, &c., and equation

B be multiplied by xm~1

-|-Ax
ID~3

-f'Bx
ni~3

, &c., it is evident that the products
must be equal ; therefore,

(x-'-fPz ^Qi + f &c.)(z
1+A'x*-a+ B'x"-5-^, &c.)=(x

n+P'z *+
Q'z-^+, &c.)(x

m-1 -
r-Ax

m-^+Bxm
-3+, &c.) ....... E.

Performing the multiplications and making equal to each other, the coeffi-

cients of the same powers of x (Art. 209), m-J-n 1 equations are obtained

between the indeterminate quantities A, B, C, . . . . A', B', C', ..... Now,
the number of indeterminate quantities in equation C is m 1, and in equation

D, n 1 ; therefore, the number in equation E is m-\-n 2. Of the m-\-n 1

equations m-j-n 2 suffice to determine A, B, C, . . .A', B', C', . . . . ; and one

equation remains between P, Q, R . . . . P', Q', R' . . . ., which it is necessary
to satisfy in such a manner that the equations C, D may have a common di-

visor, x a; this equation of condition is the final equation required.

Since none of the indeterminate quantities A, B, C . . . A', B', C' .... is

multiplied by itself, the equations by means of which these quantities are de

termined are of the first degree.

The final equation being resolved, and the values of y successively substituted

in A, B, C, .... A'; B', C', . . ., the results are obtained from the division of the

polynomials C, D by the common divisor x a.
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If the equations A, B are incomplete, the two products E can not be com-

plete polynomials of the degree m-\-n 1 ; but the terms which are deficient

in the one are found in the other. For, taking the least favorable case, viz.,

zm+P=0; :r
n+P'= 0;

the identity which results from the equality of the two products is

-2+, &c.)

EXAMPLE.

Let x2+Pa:+Q=0;

Denoting by x a the factor which is to be rendered common to these equa-
tions by the suitable determination of y, the first equation may be considered

the product of x a by a factor, .r-j- A, of the first degree ; and the second the

product of x a by a factor, x-j-A', also of the first degree.

.-. x2+P x+Q, = (x a)(x-f-A),

and

or

+A' + PA' +A + AP'

Making the coefficients of the same powers of x equal to each other,

P+A'=P'+A or A A'=P P' ..... (1)

Q+PA'=Q'+AP'orAP'-PA'=Q-Q' (2)

QA'=AQ' orAQ' QA'= (3)

By mean of these three equations of the first degree the two indeterminate

quantities A, A' can be eliminated, and a single equation obtained in terms of

the quantities P, Q, P', Q'.

For, if from equation (1), multiplied by P, or AP PA'= (P P')P, equa-
tion (2) be subtracted, or AP' PA'=Q Q', the remainder is

AP AP'= (P P')P-(Q-Q').
(P P')P (Q Q')

Whence A= p ,
.

(P-P')P'-(Q-Q')
Similarly, A'= pI-P'

'

If these values of A, A' are substituted in equation (3),

(p_P P_(Q-Q') (P-F)P'-(Q-Q-)
p p/

A VC p p/
* Vt **i

or
(
P _P')PQ'_(Q_Q')Q'_(P_P')QP'+ (Q_Q')Q=0,

or (P_P' )(PQ'_QP')+ (Q_Q')(Q_Q')= 0,

or (P_P')(PQ'_QP')_|_(Q_Q')3= 0.

The quantities P, P', Q, Q', containing only y and known quantities, this is

the final equation in y.

It has been already noticed that, if this equation is identical, the proposed

equations have at least one common factor of the form x a, whatever be the

value of y ; and that, if it contains only known quantities, these equations are

contradictory.

When the final equation has the proper form, the factor x a is obtained by

dividing the first of the proposed equations by ar+A ; thus,
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+Px+Q (x+P A

(P-A)x+(P-.A)A
Q_(P_A)A.

The quotient is z-j-P A, and the remainder is considered equal to zero,

because it is reduced to zero by the substitution, for y, of a value deduced

from the final equation.

Making the quotient z-j-P A equal to zero, the value of x is z=A P,

and by substituting the value of A,

(P-P')P-(Q-Q')
P P'

Q-Q'

--P,

This example is given as an illustration of the general method. From its

particular form it adm'rts of resolution by another and a much shorter process.

For if from z2-j-Pz+Q=0
i2_j_p'r_j.Q'_o is subtracted,

the remainder is

CP_P')z+Q-Q'=0;

P P''

OF THE DEGREE OF THE FINAL EQUATION.

323. The degree of the final equation can not be depressed by the reduction

of each of the coefficients P, Q, R . . . P', Q', R' ... in the equations

.... +Tz+V=0,

.... + T':r+V'=0,
to the term of the highest exponent in y which it contains ; for the degree of

each of the equations is not changed by the reduction. Therefore, the reason-

ing may be applied to the equations

x-}-aijx
m-1

-\-by-x
m~^ ..... -}-ty

m~l

x-{-vy
m =0 .... (1)

x +a'yx
u-l

-\-b'y^x
a-^ ..... -j-ty-'z-f c'y" =0 .... (2)

which are of the same degree respectively as the preceding equations. The
latter are reducible to *

fx\
m /ZX"3- 1

(y)
+ y

x
in which the unknown quantity is -, and a, i, . . . I, v ; a', &', . . . t', t/, are

numbers.

Denoting by a, /3, y ... the numerical roots of equation (3)

and by a', /?', / . . . the numerical roots of equation (4)

these equations may be decomposed into

*_
.) (*_,,.)(*-A &*.=<>.

y l\y J\y /'
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Whence (z ay )(x (3y )(.r -yy ),
&c. =0 ......... (5)

(x ay')(x -p'y)(x y'y), &c. =0 ......... (6)

Substituting in equation (5) the roots of x from equation (6), viz., a'y,

&y, &c.,

(a'yay)(a'ypy)(a'y yy), &c. =0,

(p'yay)((3'yPy)(l3'y7y), &c. =0,
y', &c. =0.

Or, since the number of factors in equation (5) is m, and the number of

roots in equation (6) is n,

y
m
(a'a)(a'P)(a'y), &c. =0,

y"-(/3'-a)(i3'-/?)(/3'-y), &c. =0,

y-(/-a)(/ -/?)(/ -y), &c. =0.

Consequently, there are n equations, each of the degree m ; these give all

the solutions in y. The product of these roots (or solutions) of y is the final

equation, since it becomes zero for all the values of y which render its factors

zero, and only for these values. Now, this product is evidently of the degree
mn. Consequently, the degree of the final equation (unless roots not belong-

ing to the proposed equations are introduced by the process of elimination)

can not exceed the product of the degrees of the proposed equations.

It ought to be observed that the numerical values of the roots of y are

changed by this process, but that their number remains undisturbed by it.

IRRATIONAL EQUATIONS.

324. All the direct methods employed for the solution of equations suppose
that the unknown quantities in them are not affected with any radical sign ;

when, therefore, the unknown is found under a radical sign, it will be neces-

sary, before applying the process of solution, to employ some preparatory
method of rendering the equation rational. Such a method is at once sug-

gested by the theory of elimination. For, if we equate each of the irrational

terms with an unknown quantity, and remove the radical from each of these

new equations by involution, we shall have a series of equations (including the

original one, with its irrational terms replaced by the new symbols) without

radicals, from which the quantities, temporarily introduced, may be eliminated,

and thence a i-ational equation obtained, involving only the original unknown

quantities.

The following examples will fully illustrate the mode of proceeding :

(1) Let the equation be

x JX 1+ V*+l=0.
Put

and we then have the three following rational equations, from which we may
eliminate y and z, viz.,

From the last equation we get y=x-\-z, and, by substituting this value in the

first, y becomes eliminated, and we have these two equations in x and z, viz..

x2 z+l=0;
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and, to eliminate z from these, we apply the process explained in the preceding
articles, and thus get the final equation

3*3xs>+8zt+x3+7x3 7x+2=Q.

(2) Let the equation be

^4x+7+2 T/X 4= 1.

Patting

y= V4x+7, z= V*-4,
we have the system of equations

y=4x+7, 2*=x 4,

EXPONENTIAL

325. An exponential equation is an equation in which the unknown appears
in the form of an exponent or index ; thus, the following are exponential equa-
tions :

ax=6, x*=a, a b*=c, x*
T

=a, &c.*

To resolve the equation

10*=2

put x= , thenx

10i/=2 .-. 10=2*'.

The value of x? lies evidently between 3 and 4 ; place it, therefore, equal
to 3 plus an unknown fraction, and we shall have

i i

10=2**^*, or 10=23X2i"

10 \
_ =2 .

The value of x" lies evidently between 3 and 4, .. place

and proceed as before. The value of z is thus obtained in a continued fraction.

11 1

*=?=3+l =3+1^" ^
"', <fcc.,

which may be carried to any extent at pleasure, and the value found by the

method exphiined hereafter. (See Continued Fractious.)

When the equation is of the form a*= b, or ab*=c, the value ofx is readily

obtained by logarithms, as we have already seen in Art. 220. But if the equa-
tion be of the form r*=a, the value of x may be obtained by the rule of double

position, as in the following

EXAMPLE.

Given xx=100, to find an approximate value of x.

*
Exponential equations, and those in which logarithms of unknown quantities enter,

belong to a class called transcendental.
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The value of x is evidently between 3 and 4, since 33=27 and 4 4=256 ;

hence, taking the logarithms of both sides of the equation, we have

x log. x= log. 100=2.*

First, let .TI= 3-5; then

3-5 log. 3-5= 1-9042380

true no. = 2-0000000

error = -0957620

Second, \etx.t= 3-6; then

3-6 log. 3-6= 2-0026890

true no.= 2-0000000

error =+ -002,6890

Then, as the difference of the results is to the difference of the assumed

numbers, so is the least error to a correction of the assumed number corre-

sponding to the least error ; that is,

098451 : -1 : : -002689 : -00273 ;

hence :r=3-6 -00273=3-59727, nearly.

Again, by fornting the value of x* for a:=3-5972, we find the error to be

0000841, and for x= 3-5973, the error is + -0000149;

hence, as -000099 : -0001 : : -0000149 : -0000151
;

therefore, ar=.3-5973 -0000151=3-5972849, the value nearly.

EXAMPLES FOR PRACTICE.

(1) Find x from the equation x*=5. Ans. 2-129372.

(2) Solve the equation x*= 123456789. - Ans. 8-6400268.

(3) Find.r from the equation "=2000. Ans. 4-8278226.

DEMONSTRATION OF THE BINOMIAL THEOREM.

CASE I.

326. If, at Prop. V., Art. 245, we suppose the second terms a t , a.2 , <z3 , &c., of

the binomials to be all positive instead of negative, and all equal to a, then the

products two and two will all become a2
; those three and three, a3

, and so

on ; and, by recurring to Art. 203, we perceive that the number of combina-

tions or products two and two, if we suppose that there are n binomials, will

n(n 1) , n(n l)(n 2)
be expressed by , the number three and three by

- ' -
'-, and

JL x J. <c o

Hence, where n is a whole number,

n(n 1)^~
> &c.,

3
a.-
3+,&c....... (1)

ny reversing the order of the terms, and disregarding the particular form of

the coefficients after the second term.

CASE II.

If the exponent be fractional, we have

, &c.

* In equations of this kind the following method may be adopted : Let x*=a ; then

x log. x= log. a ; put log. x=y, and log. a=b ; then xy=b, and log. x-\- log. y=. log b ;

hence y-\- log. y= log. b. Now y may be found by double position, as above, and then x

becomes known. When a is less than unity, put x=- and a=-
;
then we have W=y

y o

.-. y log. b log. y, and if log. b=c, and log. y=z ; then ey=z, and log. r-f- log. y= log. z,

or log. c+z= log. z. Hence z may be found by the preceding method, and then y and x
become known.
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Applying the mle at Art. 113 for extracting the root of a polynomial, the

first term of the root will be a^ ; the divisor of the second term of the given

(m\
o_1 m_m

a n
; =na ; and the quotient or second term of the root

will be - a*~ ^ 'x=-a x. When the two terms of the root thus found
n n

are raised to the 71
th
power, and subtracted from the given polynomial accord-

ing to the rule, the first two terms of the latter will be canceled, and the next

highest power of a to be divided by the constant divisor na
"

will be a

multiplied by x3
, and the quotient, which is the third term of the root, will

contain a to the powern 2 1m )= 2 with i8, and so on. so that the

root may be written under the form

the same form, so far as regards the exponents, as when the exponent is a

whole number. The coefficients will be examined for this and the next case

together.

CASE III.

When the exponent is negative, either entire or fractional, as a consequence
of what has just been demonstrated, we have

(ti-l-T\ m----
~(a-r.z)

m~a"'+mam
- 1x+, &c.

But if the division be effected according to the ordinary rules, the quotient

will be indefinite, and of the form

cc-
m ma-m-l

x+A."a-
m
-*x*+, &c. ;

then, whatever be the exponent of a binomial, its development, as to the co-

efficients of the first two terms and the exponents of aD, is of the same form,

viz., that indicated by equation (1).

Now, to examine the coefficients of the other terms, for the sake of gen-

erality, I shall consider two consecutive terms of any rank whatever, and I

shall write

(a-fx)
m=ain+main-1x. . .+Mam

-nxn4-Nam
-n-1i3+1+, &c.

Let us change throughout x into x-\-y ; as the unknown coefficients con-

tain neither a nor x, the above expression becomes

By changing a into a-f-y, we should have found

(a+y+j:)'
a
=(a+y)'

a
+m(a+y)'*-

tz...

. . . .+M(a+y) af+N(a+y)
-
'x-H-'-f, &c.

In the two preceding equalities the first members are equal, therefore the

second members must be equal also ; and this is the case whatever values x
and y may have. Then, if they be arranged according to the powers of y,

they must be identical. It is true, they contain binomials, but we know the

first two terms of each of these binomials, so that we can form the part which,
in each second member, contains y to the first degree, and that will suffice for

our purpose. Designating it by Yy in the one and by Y'y in the other, it

is easy to find
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Y =mam~l

Y'=mam~l -----l-M(m )a
m- n-'xn+N(m n l)a

m -a~ixa+ l .....

These two quantities must be equal, whatever be the value of x ; the co-

efficients, therefore, of the same powers of x must be equal. Considering

only those which pertain to am~n~ lxa
, we have

We see by this according to what law, in the development (1), any coeffi-

cient whatever is formed from the preceding. It is the same that we have

found for the case of a positive exponent (Art. 107, IV.) ; and as we have

seen that the first two terms are composed in the same manner, whatever

be the exponent m, it will be so also with all the other terms.

An abbreviate notation, sometimes employed to express the coefficients of

the binomial formula, is the initial letter B of the word binomial, with the ex-

ponent of the power of the binomial before it, and the order of the coefficient

above. Thus, the coefficient of the 1 term, if the exponent be n, is ex-
1 2

pressed by B ; of the 2, B ; of the 3, "B, &c. ; of the &tu term

n(n l)....(n &+1) *

, by "B, or othenvise simply nk .

X*i^*o**/C

SERIES.

RECURRING SERIES.

a,'

327. To develop the expression , in a series, place

a'

and proceeding by the method of undetermined coefficients, explained at Art.

209, we find

A=-, B= -A, C= --B, D= -C, &c.
a a a a

From which we perceive that each coefficient is obtained by multiplying the

b

preceding by -- . Here the series is a simple geometrical progression.

Proceeding in a similar manner with the fraction

we obtain

, , ,

a a a a a a

Hero each coefficient from the 3 is the sum of the two preceding, inulti-

c b

plied respectively by
- and -, or each term is the sum of the two pre-

c:c* bx
ceding multiplied by -- and .

Again, in the development of
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-, &c.,
a+bx

each term will be composed of the three preceding, multiplied respectively by
dx3 ex' bx

"
a '

a '
~~

a
*

Finally, it becomes now evident that in general a fraction of the form

a'+ i'z+c'z
3

. . . +fe'r
m-1

a -f-iz+cz
2

. . . -{-&z
m

produces a series, each term of which from the (m-f-l)
1*1

is composed of the

,
. ,. J -,_,.* h *'-,'*m preceding, multiplied respectively by -z, -x ^1

, . . . -f-, -z.

Series of this form are cafled recurrent, and the assemblage of quantities by
which it is necessary to multiply several consecutive terms to obtain the fol-

lowing term, is called the scale of relation of the terms.

328. PROBLEM. A recurring series being given, to return to the generating

fraction.

In this enunciation it is supposed that the recurring series is arranged with

respect to an indeterminate x. Let

be such a series, having for a scale of relation [px
3
, qx*, rx]. Since this scale

contains three terms, the generating fraction is of the form

If this fraction had been given, we have seen that the scale of relation would

r d c b ~1

be z8
, z8, -z I. But the generating fraction can be written thus,

- - -

a"" a 'a
~* 1 ^

* 5

a a a

and then we perceive that the three terms in z of the denominator can be at

once obtained by taking those of the scale of relation with contrary signs.

Thus, we can put the generating fraction under the form

q-fftr+TZ
8

1 rx qx- px3 '

and wo shall only have to determine a, /3, 7. To do this, place

1 rx qx
3

px3
'

and since, after clearing it of fractions, the equation ought to be identical in

form, we derive from it, having regard only to the first three terms,

Ar Br

Consequently, we shall have for the generating fraction

S_A+(B-Ar)r+(c-Br-Ag)3*

1 rx qx
3

px
3
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For example, let S=l 2.r .r
2 5x3

-)-4.r
4

. . . be a recurring series,

whose scale of relation is [+X3
, -j-4

4
, 2.r]. Taking the above formula, we

shall have

A=l, B= 2, c= l,p=l, q=4, r=2,
and we shall find

329. PROBLEM. A series being given, to determine whether it be recurring,

and, in this case, to return to the generatingfraction.
Let the given series be

Let us determine first whether it be equal to a fraction of the form : r~
a-\-bx'

and place S= r~r"- From this equation we derive
a-\-bx

1 a-\-bx a b

S
=~ r̂

~=
a'+*X;

the quotient, therefore, of (1), divided by the series, ought to be exact, and of

the form p-\- qx. Then the generating fraction will be expressed thus :

g_
*

p+ qx

If the division does not stop at the second term this series will not be recur-

ring, or else it will arise from a more complicated fraction.

a/-i-b'x
Place S= r-r r j, we shall have

a -\-bx-\- ex
1

1 a -\-bx-\- ex* a"x^

S
=

a'+ b'x =P+qX+
a'+b'x'

that is to say, dividing (1) by the series S, if we stop the division after we
have obtained as a quotient terms of the form p -j- qx, the series S^2

, which is

the remainder that we then have, and which is always divisible by or
3

, will be

Si a"
such that, after we have removed this factor, we must have -5 =-, ,. .

S a -\-b x

Hence we derive

S a'+Vx
S^ a" =Pi+Wi

that is to say, the new division ought to terminate at the second term in the

quotient ; and then, to find the generating fraction, we shall have the two

equations

1 S, S

g
whence

s_
; s~

Consequently, the generating fraction will be

S=-
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Suppose that the quotient of S by S t is not exactly pi-\-q\x ; if the series

is recurring, it will be of an order superior to the second. Let us examine if

we can have S= ?
;

-
, ,

, ,.

a+ bx-\- cz
2
-j-ax

3

We derive from this equation

1 a"+b"x

that is to say, after having obtained the first two terms of the quotient of 1,

divided by the series Si, we shall find for a remainder a series, all of whose

terms will contain Xs ; and if we designate this remainder by S^t
3
, we shall

have

S, a"+b"x
'S

==
a'+b'x+c'x*'

This equality gives

hence, designating by S ;.r
2 the series which we find for a remainder alter

having carried the division of the series S by the series Si to the terms of the

quotient p\-{-qiX, we should have

From this last equality we derive

S,

s;=

Here the operations stop ; for, returning to the generating fraction, we shall

have the equations

S! S S3 S,

and from these equations we derive

_ __ _
Si

' S Sj
' S t ps-\-q*z

We have, then, only a few substitutions to make in order to obtain a frac-

tion equal to S.

Without proceeding further, the reader will doubtless perceive that the

successive operations for finding the quotients p-\-qx, pi+^r, &c., and for

returning to the generating fraction, bear a striking analogy to those which are

necessary in reducing an ordinary fraction to a contirued fraction, and in re-

turning to the ordinary fraction. This observation will take the place of a

general rule. If we arrive at a division which gives an exact quotient of the

form p-j-gr, we know that the series is recurring. (See Contin. Fractions.)

EXAMPLE.

Suppose we wish to determine whether the series of numbers 1, 2, 3, <fcc.,

be recurring. It is not this numerical series which we must consider, but the

equation

We perceive that the operations will be performed as follows :
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Division of 1 by S

l 2x

21 3z2 4.T3 5z*

2r 4:r3 6r> 8x* ....

Division ofS by Si.

1-

1

1 S, S
Hence, the series S is recurring, and we have ^=1 2x-|--^-T

2
, cl=l-

fe & o

IS, 1

We derive from this S= 5 o~ :=: l > consequently, S=- 7T < i
1 O i 9 O J.

^^ ** ~r~

l_2x+^
1

REMARK. In finding a rule to determine whether a series is recurring, we
have considered the series as derived from a fraction whose numerator is of a

degree inferior to the denominator. But even if this last condition does not

have place, it is easy to perceive that the same explications, and, consequently,

the same rule, will always subsist.

329. PROBLEM. To find the general term of a recurring series.

Suppose that the series has for a generating fraction

p_ a'+ l
'x+ ----r-fr*""

1

~~

a-{-bx + ----\-kx
m

We can write this fraction thus :

Y= (a'-\-b'x ----\-h'x
m~ l

)(a+bx-\

It is evident, then, that by developing die power 1, obtaining the product

of the two factors in this equation, and taking in this product the part which

contains x to any power whatsoever, we shall have the general term of the re-

curring series. But the problem is resolved ordinarily by another process,

which I proceed to exhibit.

We divide first all the terms of the fraction F by &, and write it under the

form

U a'x'
n" 1

+^'zm
^ 2+

V= ar
m
4-a.r

!11
- 1

+!0:r-
s^----

'

The fraction is supposed in all cases to be reduced to its most simple form,

so that Ulias no common factor with V.

We decompose, then, the denominator into binomial factors, such as x-\-a,

whether it be by equating this denominator to zero, or by some other method,
and then the fraction is regarded as resulting from the addition of many others,

which have for denominators these different factors. We determine all these

partial fractions, and then form the general term of the development of each ;

then, taking the sum of these general terms, we shall have the general term

of the recurring series.

In this decomposition into partial fractions it is necessary carefully to dis
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tinguish in V the simple factors from those which are raised to powers jTor

each simple factor x-\-a we shall take a fraction of the form

M
x-Jf-a

For each factor, such as (*-}- fe)

n
, we might take one of the form

but it is more convenient to have only fractions with monomial numerators ;

instead, therefore, of a fraction like the preceding, we take n, like the fol-

lowing :

N Nt N. N^

M, N, Nj . . . representing quantities independent of z.

Consequently, if we suppose that V=(x-\-a)(x-\-b)
a

. .., we can place

U__M_ N N! N_.
V za+

and the question will be reduced, for the present, to the determination of the

numerators M, N, N t , &c. But these have been determined in Art. 209, (3).

The preceding decomposition being effected, the determination of the gen-
eral term of the recurring series does not offer any difficulty.

Each partial fraction can be put under the form P(p-}-x)~\ designating by
/. an entire positive number, which can be equal to 1. If we develop this

power, we readily find that the term affected with z is

It is the sum of like expressions, all containing x, and resulting from the

different partial fractions which compose the general term required.

When the denominator of the generating fraction contains imaginary fac-

tors, these factors introduce imaginary quantities into the general term. If

we suppose, however, that the coefficients of the numerator and denominator

of the proposed fraction are all real (and they are always taken so), it is evi-

dent, a priori, that, as we find the development of this fraction by division, the

general term can not embrace any imaginary factors ; consequently, we are

sure that all the imaginary quantities which arise from the factors of the d

nominator will disappear.

SUMMATION OF SERIES.

The summation of series is the finding of a finite expression equal to the

proposed series, even when the series is infinite, and in many cases this finite

expression is found by subtraction.

EXAMPLES.

(1) Required the sum of the series + -J- -j- .... to infinity.

111111
Let S= + +++++ ............

111111
1=+ + ++++ ............ ad i
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Hence, by subtracting the latter from the former, we have the required sum11111
(2) Required the sum of the series :r~^+o~T+o~E+ to n terms.

l.o *.4 o.o

i iii
i.

i i _i i ^11 i

Subtracting (b) from (a), we have

1 1 1
2_
222 2

l 15 1 / 1
_1_

=
2< ~n + l~T~2~n^\

n n

2w+2~'4
When n is infinitely great, then we have

1 111 .: >s '. __!/ 1\ 1 1 3

(3) Sum the series o"T+T~^ 7^+
J. o /w 4 3O 4

Ans. -
4

(4) Sum the series -190 4+0 Q 4 n+i x c; + a^ m fiQitum '

Ans. i.

(5) Sum the series 1^3+2^+3^5+ to w terms<

32 1

(6) Sum the series a-f-2ar+3ar
3+4ar3+ .... to n terms.

Ans.
( lr" nra

>

. a < 7^
-

rr
-- > .

1(1 r* 1 rS

(7) Sum the series 1+3x+5xz+7^+9^ .... ad infinitum.

Ans.
1+*

(1 zV

DIFFERENCE SERIES.

330. Let there be the arithmetical progression

a, a+<5, a+2<*, a-\-3t ....

If we begin with a new term, 6, and add to it successively each term of the

above, we obtain

6, 6+a, fc+Sa+d, 6+ 3a+3d, 6-f-4a+6(5 . . .,

which is called a difference series of the 2 order, and so on, as in the follow-

ing scheme :
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cries.
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Giving .r the values 2, 1, 0, 1, 2, we have the following results inclosed

in the parentheses :

.A 4 -A 3 -A._2 .A._i .X-O -A-i <A-2 -A_3 Jv^

+ 744 49(_ 58 +159 +260 +119 174) 313+224,

forming a series of the fouith order. The series of the third order is

793 9(+ 217 +101 141 293) 139+ 537 ;

of the second, +784 +226( 116 242 152)+ 154+ 676 ;

of the first, 558 342( 126 + 90)+ 306+ 522;

equal differences, +216 +216(+ 216)+ 216+ 216.

By substituting other values, as 3, 4, 5, 6, and +3, +4, +5, +6,
&c., we may extend the top series to any length.

To save the time and trouble of substituting consecutive numbers and calcu-

lating the result, the method of difference series is employed, thus :

Substitute a number of consecutive values one more than the degree of the

equation ; the smallest numbers, being more easily substituted, are preferred.

In the present example, substituting 2, 1, 0, 1, 2, we obtain that portion

of the first series which is of the 3 order, included in brackets ; from this,

by subtracting its consecutive terms, the corresponding portions of the series

of the 2 order, and so on
; and, finally, the difference, 216. Using this dif-

ference, we may extend the top series at pleasure, according to the method

in Art. 330.

The roots of the equation lie between those numbers the substitutions of

which produce unlike signs in the result ; thus, in the above there is one root

between 3 and 4, one between 1 and 2, one between 1 and 2, and

one between 3 and 4.

334. There exists between the coefficients of two consecutive powers of

x-\-a relations from which many useful consequences may be deduced.

Suppose the mth
power of x+ a to be

zm+ Aeu:m
-1+Ba2

.r
ra- 2+ Ca3^>-3+, &c.

Multiplying the polynomial by z+a, there results

From which we conclude that, to obtain the coefficient of any term of the

(m+ l)^ power q/"x+a, it is only necessary to add to the coefficient of the term

of the same rank in the mlA

power that of the preceding term,

335. According to this rule, we can form the coefficients of the successive

powers of x+a, as may be seen in the following table :

1, 1, 1, 1, 1, 1, 1, 1, 1 ...

1, 2, 3, 4, 5, 6, 7, 8 ...

1, 3, 6, 10, 15, 21, 28 ...

1, 4, 10, 20, 35, 56 ...

1, 5, 15, 35, 70 ...

1, 6, 21, 56 ...

1, 7, 28 ...

1, 8 ...

1 ...

The first vertical column of this table is formed of the single number 1. The
second column is formed of the number 1 written tw ;ce. We form the third
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column by placing at the side of each term in the second column the number

obtained by adding it to the term above it ; we find thus, for the first term of

the third column 1+ or 1 ; the second term is 1+ 1 or 2, and the third

0-j-l or 1. The fourth column is deduced from the third in the same manner

that that is from the second, and so on. The two terms of the second column

may be considered as the coefficients of the first power of ar+a. It results

from the above rule that the terms of the third column are the coefficients of

the development of (z+a)
2

, those of the fourth column of (z+a)
3
, &c.

This table, which may be indefinitely extended, is called the Arithmetical

Triangle of Pascal.

336. It is easy to see from the composition of the arithmetical triangle that

the p^ term of any horizontal line is the sum of the p first terms of the pre-

ceding horizontal line. Because if we consider, for example, the term 56,

which is the sixth of the fourth line, this term is formed by adding the two

numbers 21 and 35, which are placed at its left in the third and fourth lines ;

but the second of these two numbers, 35, is the sum of 15 and 20 ; the last

number, 20, is the sum of 10 and 10, and the last number, 10, the sum of 6

and 4 ; finally, 4 is the sum of the two numbers 3 and 1 ; we have, therefore,

56=2

THE DIFFERENTIAL METHOD OF SUMMING SERIES.

337. Let a, 6, c, d, e, . . . . be a series of terms, in which each term is less

than the succeeding one ; and, taking the successive differences, we have

a b c d e, &c.

(di) b a c b d c e d, &c.

(dz) c 26+a d 2c+6 e 2d+c, dec.

(da) d3c+3b a e3d+3c 6, Arc.

(</) e 4<f+6c 46+a, <kc.

Putting di, d?, ds, d ..... for the first terms of the first, second, third

fourth, .... differences, we have

b a =d l
.-. 6=a+ d\

c 26+a =< 2 .-. c

&c. &c.

Hence the (n+l)* term of the proposed series is evidently

and, therefore, the nP term is (by writing n 1 for n)

(n l)(n 2) , (n l)(ra 2)(n 3)^- ->-^--L-
(i)

338. Tofind (S) the sum ofn terms of a series.

Let a, 6, c, d, e, &c.
and 0, a, a+6, a+&+c, a+&+<-.|.^. <fcc.,

be two series, of which the (n+1)
111 term of the latter is obviously the sum of

n terms of the former : but the first terms of the first, second, third, fourth

..... differences in the latter, are
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a, ba=di,* c 2&+ a=rf.2 , d 3c+86 a, =^3 ,
&c. ;

hence the (n+l)
111 term of the latter series, or the sum of n terms of the

former, is, by (1) in the last article,

n(n-l)(n-2)(n-3)
1.2.3.4

or

n(-l) n(n-l)(n-2) J n(n-l)(n-2)(n-3)
,

,.
s=*a+-T^-*+ TTsTs

J*+--172T374-

EXAMPLES.

(1) To what is 1.2+2.3+3.4+4.5-|---- (n+l) equal?

2, 6, 12, 20, 30, is the given series ;

4, 6, 8, 10, differences of the consecutive terms;

2, 2, 2, differences of these again, d2 ;

0, 0.

Hence, a=2, e?i=4, dz=2, and cZ3 , d4 , &c. =0; therefore

n( 1) 7 n(n ])( 2) .

8=+-^-^+^ ^--Urf

=2+2n(n l)+ n(n l)(n 2)

Proceed always in this way till the differences become the same.f

(2) Find the sum of n terms of the series 1, 23
,
33

,
43, 5

3
, &c.

(3) Find the sum of n terms of the series 1, 4, 10, 20, 35, &c.

(4) To what is 1.2.3+ 2.3.44-3.4.5+ ..... n(n+l)(ra+2) equal?

(5) Sum n terms of the series 1, 3, 5, 7, 9, 11, &c. . . .

(6) Find the sum of 15 terms of the series 1, 4, 8, 13, 19, &c.

(7) Sum 8 terms of the series 1, 24
, 34, 44, 5

4
, 64, &c.

ANSWERS.

(2) (5) n*.

(6) |n(n
2+6n 1)=785.

n5 n4 n3

O <o o oU

POWERS OF THE TERMS OF PROGRESSIONS.

339. If all the terms of a geometrical progression

4fa : aq : aq* : aq
3 .... aq

n~l

are raised to the same power m, the result is the series

a, amq
m

, a"1

}
2

, a
m
q
zm amqm(

"~ l

'>,

which is a geometrical progression, of which the first term is am ,
the ratio q,

and the number of terms n.

340. If the terms of a progression by differences, whose first term is a and

common difference <5, be each raised to the m"' power, we have

*
This is the d\ of the former series, but the d,2 of the latter.

t The terms of the formula (2), containing those orders of differences which become zero,

like ds, di, &c., in example 1, will all vanish, and the expression for S will be compoied

only of the preceding terms.
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am=am
.

m(m 1)

(a+ (J)

a'=ain+mam-1 J-
*

(a 2<J)
m=am+ma

(a 3d)
m=am+mam-1

3<J+ a'-s
9<J*+, &c.

&e. &c.

Taking the differences of the consecutive terms,

m(m 1)7_ a =

(a+ 3d)
m

(a+ 2<J)
m=ww"-1^ a -^^4- , &c.

These differences being not the same, the same powers of the terms of an

arithmetical progression do not form an arithmetical progression.

.341. To find the sum of the m* powers of an arithmetical progression. Let

--a .b.c.d k . I

be any arithmetical progression, of which the common difference is 6. Then

&=a+d, c=b+d, ..... l=Jc+d.

Raising these equalities to the power a+l,

, &c.

Adding all these equalities, suppressing the common terms in the two equa

suras, viz., b* 1
, cm+1 , &c., and transposing a"^

1
, we have

I o abridge, let

a +2> +c+d....+k +Z =S,,

Then the last expression becomes

-^)+^t^^(S_1-Z--)+ , &c.

The value of Sm deduced from this is

m(m 1)
I-g-') -V(S^-^)-. to. (1)

The law of the unwritten terms is sufficiently apparent, and the series must

evidently end with the term preceding that which contains the factor m m
orO.
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By formula (1) the sura Sm can be found, when the sums of the inferior

powers are known ;
for this purpose, make m=0, the formula gives S ;

making ra= l, it gives S n and so on to the sum of the powers required.

If the progression -^- a. a +(5 .a+2<5. ... is replaced by -4-1 .2.3... .N (or

the series of natural numbers from 1 to N), i. e., a=l, <J=1, J=N, then for-

mula (1) becomes

Sm=N.+^-f ,
S._l-N-)- !^(S-N-')-, to. (2)

If m=0, (2) becomes

So=N+^^=i+^pi=N .... ......... (3)

Ifm=l,

q N(N+1) mSl=
2
-- ......................... (4)

Ifm=2,
TC3_ 1

* --

N3 N3 N 2N3+3N2+N
i _ i ____!_-J_

3 ^ 2 ~6~ 6

Formula (3) expresses the sum of l+2+3. . .. to N terms, or of

+ 1... to N.

EXAMPLES.

(1) If m= and N=10, S =N= 10.

Formula (4) expresses the sum of 1+ 2+3. . . .+N.
10(10+ 1) 110

(2) Ifw= l and N =10, S1= t)

n--^=-ir =55.

Formula (5) expresses the sum of 1 2+ 22+ 32 .....+N2
.

10X11X21
(3) If m= 2 and N=10, S 3=------ =385.

PILING OF BALLS AND SHELLS.

342. Balls and shells are usually piled in three different forms, called trian-

gular, square, or rectangular, according as the figure on which the pile rests

ns triangular, square, or rectangular.

(1) A triangular pile is formed by continued horizontal courses of balls or

shells laid one above another, and these courses or rows are usually equilateral

triangles whose sides decrease by unity from the bottom to the top row, which

is composed simply of one shot.

Denoting by N the number of balls contained in one side of the equilateral

triangle which forms the. base of the triangular pile, it is evident that the num-
ber of balls in the base will be expressed by 1+2+3 . . . +N or Si, which

by (4) is equal to

N'+N
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If in this expression N is successively replaced by the uumbers 1, 2, 3 ---- ,

the number of balls in the successive layers, beginning at the top, will be ob-

tained. These are,

P+l
in the first,

- =1 ;

in the second,

in the third,

4s-I- 4
in the fourth, ^ = 10.

Whence the sum of the whole number of balls contained hi the pile is

3*4.3

which is sometimes used. A better form may be obtained from this by writing
it first

P-f2*+3* ^3 14-2+3 . . .

2 2

or

S-i+S t 1/2N
3+3N3+N :

~~2
=
2\ <T~

~+ 2

or

N(N+l)(N+2)
~~6~~ "

the most convenient expression for the number of balls in a triangular pile.

EXAMPLE.

How many balls in a triangular pile, the side of whose base contains 35 ?

35(35+l)(35+2)
Ans. - -^=7770.

o

(2) A square pile is formed by continued horizontal courses of shot laid one

above another, and these courses are squares whose sides decrease ly unity
from the bottom to the top row, which is also composed simply of one shot ;

and hence the series of balls composing a square pile is

1+ 4+9+16+25+.... +N*=S2=
v

where N denotes the number of courses in a pile.

EXAMPLE.

If a side of the base of a quadrangular pile contains 35 balls, how many in

the pile ?

35x36x71
Ans. - =14910.

o

(3) A rectangular pile is one in which the layers, except the uppermost, are

arranged in rectangles. Representing by m+1 the number of balb in the

top row, the layer below it must contain 2 rows of m+2 balls, the next layer

3 rows of wi+ 3 balls, and so on, to the N'*, which contains N rows of wi+N
balls each ; and the number in this pile is
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-\-4)+ ---- N(i +
23 -32 -42

. : . . N*

. . .N)-f square pile

r- . m-\- square pile.

(4) The number of balls in a complete triangular or square pile must evi-

dently depend on the number of courses or rows ; and the number of balls in

a complete rectangular pile depends on the number of courses, and also on tho

number of shot in the. top row, or the amount of shot in the latter pile depends
on the length and breadth of the bottom row ; for the number of courses is

equal to the number of shot in the breadth of the bottom row of the pile.

Therefore, the number of shot in a triangular or square pile is a function of N,
and the number of shot in a rectangular pile is a function of N and m.

The expression for a rectangular pile,

may be written

6

But m-f-1 is the number of balls in the top row, N is the number in the smaller

side of the base, and m-j-N the number in the greater side, 2(/w-|-N) the

N(N+ 1)number in the two parallel greater sides ; moreover, -----
is the number

of balls in the triangular face of each pile; hence we have also this general
rule for rectangular or square piles.

RULE.

Add to the number of balls or shells in the top row the numbers in its two

parallels at bottom, and the sum multiplied by one third of the slant end or

face gives the number of balls in the pile.

EXAMPLES.

(1) How many balls ai'e in a triangular pile of 15 courses ? Ans. 680.

(2) A complete square pile has 14 courses : how many balls are in the pile,

and how many remain after the removal of 5 courses ? Ans. 609 and 554.

(3) In an incomplete rectangular pile, the length and breadth at bottom are

respectively 46 and 20, and the length and breadth at top are 35 and 9 : how

many balls does it contain ? Ans. 7190.

(4) The number of balls in an incomplete square pile is equal to 6 times

the number removed, and the number of courses left is equal to the number
of courses taken away : how many balls were in the complete pile ?

Ans. 385.

(5) Let h and k denote the length and breadth at top of a rectangular

truncated pile, and N the number of balls in each of the slanting edges ; then.

if B be the number of balls in the truncated pile, prove that

N <
Bz=-

|
2
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VARIATION.

343. Let a denote a constant quantity, or one which does not change its

value, and x a variable which is supposed to increase or diminish.

The product of the quantities a and x being denoted by X, if x is increased

or diminished, X will be increased or diminished in the same propoition.

Thus, if x become or', and, consequently, X become X', we shall have

x : x' : : X : X',

for

ax x X
a.r=X and ax/=X' .*. ,=-;=^r,, or z : z' : : X ;X'.

ax r 1L

Under these circumstances X is said to vary directly as x.

The symbol of variation is x ; and the expression X varies directly as x, is

indicated by the combination of symbols X x x.

344. If the product of x and y be constant, and x, y both variable, since

xy=x'y'= C,
1 1

x : x? : : y' : y ::-:.
y y

In this case as x varies as the reciprocal of y, x is said to vary inversely as y,

and the symbolical expression is

1
TOC -.

y

If zi/=X and z'i/'=:X', then X : X' : : xy : x'y'.

The variation of X in this case depends on the variation of two quantities

r and y, which is expressed thus,

Xoczy.
X X' X X'

345. If rw=X and r/

7/':=X', then, x= and x'= - .-. x : x" : : : .a y tf y y
In this case x is said to vary as X directly, and as y inversely. The symbol is

X
ZOC .

y
x y y z

346. Let xi i/, i. e.,x:x'::y:y' or =' ,andlet^oc z,i. e.,y:y':z::z' or ,= ,

x z
.-. ~7=~ or z : z' : : z : z

7

, i. e., zoc z ;

mat is, if one quantity vary as a second and the second as a third, the first

varies as the third.

347. In like manner, if x oc y and y cc -, x oc .

Again, let XQC y and zoc y .. x cc z, or x:x'::z:z\ or x:z::x':z' ;

But z:z' ::y:y', ..xz:x'z'::y:y', i. e., i/xxir.

Again, since xccy, x:x'::y:y', and since zxy, z:z'::y:y', ..xz:x'z'

. . if- : y'
2
, and -\/xz : -Jx'z' : : y : y', or y a V'xz ; that is, if two quantities vary

respectively as a third, their sum, difference, or square root of their product,

varies as this third quantity.

348. If x x y and m be a constant quantity, integer or fractional, since x : y : :
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x' : y', .. x : y : : mx' : my' (Art. 127), i. e., x cc my ; that is, if one quantity vary
as another, it varies as any multiple or part of this other.

When x <x y, and, consequently, x tx. my, so that x : x' : : my : my' or x : my
::x' :my', then, if x=?ny, x' will be equal to my' in all cases; whence, if x

vary as y, x is equal to y multiplied by some constant quantity.

349. If X and Y are two corresponding values of x, y,

j
X=wY, .. m=y ;

from which it follows that, when two corresponding values of x, y are known,
the constant m may be found.

350. Let xccy .-. x:x': :y :y' .-. x1" :x'm : :y
m
:y'

m .. xm oci/
m

;

m being any exponent integer or fractional. Whence, if one quantity vary as

another, any power or root of the first quantity will vary as the same power
or root of the second quantity.

351. Let xy.y, and let t be another quantity, either variable or constant, and

of which t, t' are either equal or different values. Then, since

xccy, x : x' : : y : y', and t:f::t:t';
.-. xt : x't' : : yt :

y't', or xtv.yt ;

x x' y y' x y
~t''J''

:

't'J"
0r

~t

a:
~t'

that is, if one quantity vary as another, and if each of them be multiplied or

divided by any quantity, variable or constant, the products or quotients will

vary as each other.

37 11 1C

Consequently, if x <x y,
-

cc '-, or oc 1 .

x
Whence, if x cc y,

- is constant.J
y-

352. Let xy a X, i. e., xy : x'y' : : X : X' ;

by alternation, xy : X : : x'y' : X' ;

X X' X
,.

2/
:-::

2/':-,.2/=c-;

X
and similarly, x oc ;

that is, if the product of two quantities vary as a third quantity, each of the

two quantities varies as the third directly, and as the other inversely.

353. If X=X'= constant, xy : I : : x'y' : 1 ;

1
,

l l
.'. x :

-
: : x : or x oc

-
:

y y y

that is, if the product of two variable quantities be constant, these quantities

vary inversely as each other.

354. Let a be a constant, and x, y, z variables, and let

a:x::y:z, a : x' : : y' : z', &c. ;

.-. az=xy, az'=x'y', &c. ;

.-. az :az' :: xy: x'y', or z : z' : : xy : x'y'

that is, if four quantities are always proportional, and ono or two of them are

constant, the others being variable, it can be found how the latter vary.

355. Let x, y, z be three quantities, of which, .rat/ when z is constant, and
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JOLZ wheu y is constant; it is required to determine the variation of x when

y, z are both variable.

Suppose, first, that x is made to vary as y, and that when y becomes y', x

becomes x'.

Next, that x' (varied from x by the variation of y) is made further to vary
as z, and that when z becomes z', x' becomes x". Then, since

x:x'::y:y', and if : x" : z : z'

.-. xx'ix'x"::yz:y
t

z',

or x : x" : : yz : y'z' ;

i. e., xx. yz.

Therefore, if x vary as y when z is constant, and as z when y is constant,

when y, z are both variable, x varies as the product yz.

Similarly, it can be proved, that if t vary as r, x, y, z separately, the others

being constant when c, x, y, z are all variable, t varies as the product vxyz.

SYMMETRICAL FUNCTIONS OF THE ROOTS OF AN EQUA-
TION.

356. THERE are certain functions of the roots of an equation which may be

expressed, in a general manner, by means of the coefficients of that equation,

without the equation itself being resolved.

These functions, which form a very extensive class, are termed rational

and symmetric functions, or simply symmetricfunctions.

They are called rational, because the roots do not eater into them tinder

the radical sign, nor with fractional exponents ; the roots are combined only

by addition, subtraction, multiplication, and division. These functions are

called symmetric, because the roots are combined in such a way that any two

of them may be interchanged without altering the value of the function.

For example, the expressions

ab ac be

ac+bc+ab, a*+b*+c*, + + _3afec

are rational and symmetric functions of a, b, c.

All the coefficients of an equation are symmetric functions of its roots, as

may be seen in the expressions for the cpefficients in Art. 245 ; for, in these

expressions, if a^ were written in every place where a3 occurs, instead of a&
and a-i in every place where ax occurs, instead of als or if any other two of

the roots were interchanged, the values of the expressions would not be

altered.

Several quantities, a, b, c, &c., being given, if we arrange them two and

two, in every possible way, and if in each arrangement, e. g., ab, we give the

exponent a to the first factor and the exponent # to the second, we have a se-

ries of products such as a"W, whose sum is evidently a symmetric function

of the quantities a, b, c, &c. This function is called a double function, be-

cause each term contains two of the given quantities ; it is represented,

abridged, by S(a"b- ),
the letter S being here employed to denote the word

sum. In like manner, triple, quadruple, &c., symmetric functions are repre-

sented by S(a
abfy

). S(a"o
iicyds

) J &c.

In accordance with this notation, simple symmetric functions, as a<

*-}-6
<1
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. ., will be represented by S(a"), which, for the sake of abridgment,
is ordinarily written Su . In like manner, wo have

S!=a -\-b -\-c -J-...

S.,= 3+&3+c3
+...

&c. &c.

The notation of which we have been speaking applies to entire symmetric
functions ; but when the terms of a symmetric function are fractional, we
can, by reducing them to a common denominator, express the function by a

single fraction, whose numerator and denominator are integral symmetric
functions. Thus :

ab ac be

which is a fractional symmetric function of a, b, c, becomes, by reduction,

357. An equation being given, to find the sums Si, S2 , &c., of the like and

entire powers of its roots.

Let the equation be X=0,
or x-'+P^^+ Qx^-'+Ra:- 3

. . . +Tar+U=0 .... (1)

and call the m roots a, 6, c, d.

We can find by Art. 238 the quotients obtained by dividing X by each of its

factors, x a, x b, x c, &c. ; and we know (Art. 253) that by adding these

m quotients together, the sum must be equal to the derived polynomial X', or

The coefficients, therefore, of the powers of x, in this sum, must be equal to

the coefficients of the same powers of x in the derived polynomial X', each to

each. In this manner the required sums can be determined.

Let us take, then, the quotient of X divided by x a,

+ P

+ Q
+R

+ T.

In order to have the other quotients, it will be sufficient simply to substitute

for a, in this expression, successively i, c, cZ, &c. If we add these quotients,

and put Sj, S 2 ,
S3 , &c., instead of the sums a-\-b-\-c+ . . ., G

2
-f-i

3+c2
4- . .

-i we shall have

mxn-i+S,
+mP + PS!

1^+83
'

+PS 3

'

H-QSi
1

-\-rnE,

+ PS

Hence, equating the coefficients of corresponding terms in these identical

expressions, we get
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S,+PS,+mQ=(m 2)Q,

Mm 3)R,

-----|-mT=T,
or, simplifying.

S,+P=0,

Sa+PS a+QS,+ 3R=0, (2)

. . . -4-(ro-l)T=0.

By means of these equations it will be easy to calculate successively Si, Sit

S3 , &c., and, finally, S.nu i. e., the sums of all the similar powers of the roots

whose index is less than the degree of the equation. In order to determine

the sums of the higher powers, expressed by Sm , Sm+i, SOT+3 , &c., we substi-

tute successively a, b, c, . . . in equation (1), and thus obtain

a ---- 4-Ti+U=0
&c.

We multiply these m equalities respectively by a", Z
n
, &c., and then add

them ; we thus obtain

Sm+0+PSm+n_1+QS1D+^s -----|-TSn+1+USn=0.

We can make successively n=0, 1, 2. &c., and thus determine S m , S^i,
Sm+2, ..... ; we find

Sm +PSm_1+QSm_3 . . . +TS 1+USU=0
Sm+i+PS m 4-QS^ ----hTS :+US1== (3)

S^+PS,^! +QSm . . . +TS3+USi=
In the first of these equations we can put in place of US , mU, for So

=a -
r-Z> + c + . . . =m; we shall thus find that these formulas follow the.

same law with those in (
-

2). By means of the first of these we can determine

Sm , and, passing successively to each of the succeeding formulas, we shall be

aHe to determine each new sum by means of the sums already calculated.

It may be well to observe that all the sums, Si, S 2, S 3, &c., may be ex-

pressed without any denominator in functions of P, Q, R, &c. This results

from the fact that the first term in each of the relations (2) and (3) has unity

for its coefficient.

EXAMPLES.

(1) For a numerical application take the equation i3 7x-\-7=Q. Here

P=0, Q= 7, R=7. Since P=0, the relation S,+P=0 gives S,=0.
The relations, then, which determine the sums Si, S 2 ,

. . . S6. reduce them-

selves to

S,=0, SC+2Q=0, S3+3R=0,
S 4+QS,=0, S.^+QSa+^S^O, S 6+QS4+RS3=0;

and, by substituting the values of Q and R, we readily find

S,=0, S 3=14, S3= 21, S 4=98, S,= 245, S6=833.

(2) Calculate the sums of the similar and entire powers of the roots of the

equation x* xy 19x2-f 49z 30=0.

Ans. S,= l, S :
= 39, S3= 89, S4=723, S5= 2849, S6=16419, &c.
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(3)

Ans. S1==0, S 2=0, S3= 3r, S<= 4s, S 5=0, S 6r=3r2
.

358. In the equation Sm+n+PSm+n_1+QSm+n_2 . . . . +TSn+l+US.=0
n can be a negative number, and thus the sums of the negative powers of the

roots can be determined. But it will be more simple to change x into - in

the proposed equation, and to find successively, by means of formulas (2) and

(3), the sums of the positive powers of the roots of the transformed equation.

It is evident that these powers are the negative powers of a, b, c, . * . .

359. To determine double, triple, Sfc., functions, represented by S(a
a
Zr

),

S(a
a
zA:y

),
&c.

In order to find S(a
a r

)
we multiply together the two sums

aa+&
a
+c"+...=Sa,

we have

This product contains two series of terms. The first series is the sum of all

the powers a-\-/3 of the roots, and may be expressed by S a+(3 ; the second

series is the sum of all the products which are formed by multiplying the

power a of any root whatsoever by the power j3 of any other root, and may
be expressed by S(a

a
b0). We have, then,

and from this equation we derive, for double functions, the formula

S(a
a
&0)=SS0 S.H-0.

To find the triple function S(a
a
b^cY

), multiply together the three sums

a
a
+b

a
+c

a
+...= Sa,

+...= S/j,

The product is a symmetric function, which evidently comprises all the

terms contained in each of the five forms

hence we have

Sa+^Y+S(a
a
+^)+ S(a

a+^) )

+S(^+^)+ S(a
a^) j"

But the formula for double functions gives

a-Sa+/J+r

By substituting these values in the preceding equality, and then deriving

from this equality the value of S(a"rc
y
),
we obtain for triple functions the

formula

In the same manner might the quadruple function S(a
a
lrcYd

),
or the sum

of any succeeding combinations, be expressed by the sums of the powers.
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360. Every rational and symmetric algebraic function of the roots of an

equation can be expressed rationally by the coefficients of that equation.

Since Sn S3 , 83, &c., can be expressed without denominators (Art. 357) in

functions of the coefficients of the proposed equation, and the double, triple,

quadruple, &c., functions can be expressed by the sums of the powers, it fol-

lows that all these symmetrical functions can be expressed by integral func-

tions of the coefficients. And as every symmetrical polynomial in a, b, c. . .

must be composed of the assemblage, by addition or subtraction, of several

symmetric functions of the form S(a
a
b^cYd . .

.),
it follows that the value of

every rational symmetric function whatever of the roots of an equation (with-

out the roots being known) can be expressed by the coefficients of the equa-
tion.

USE OF SYMMETRIC FUNCTIONS IN THE TRANSFORMATION OF EQUA-
TIONS.

361. Symmetric functions present themselves in the transformation of

equations, whenever the roots of the transformed equation must be rational

functions of the roots of the given equation.

Let a, b, c ... be the roots of the given equation ; for the sake of definite-

ness, I suppose that two of its roots enter into the composition of each root

of the transformed equation, and I represent by F(a, b) the rational function

which expresses the law of this composition.

Suppose that, after we have made all these combinations, two and two, of

a, fc, c . . . we put successively in F(a, b) instead of a and 6, the two roots of

each arrangement, it is clear that we shall thus have all the roots of the trans-

formed equation, to wit :

F(a, A), F(a, ),...., F(6, a), F(6, c) &c.

Consequently, this equation, decomposed into factors, will be

[z-F(a, b)] [
2-F(a, c)] . . . . =0.

This product does not vary in making between a, 6, c .... the proposed ex-

change ; for, if we make the change, the factors can only place themselves in

some other order. We are sure, then, that, after the multiplication, the co-

efficients of the different powers of z will be symmetric and rational functions

of a, b, e ...

Thus, by following the method of procedure hitherto explained, we can

express these coefficients by means of those of the proposed equation.

362. But there exists another method, often preferable, of employing sym-
metric functions.

It is founded on the observation that the relations [2] and [3] in Art. 357,

existing between the coefficients of an equation and the sums of the similar

powers of its roots, can be used to discover the coefficients of the equation
when they are unknown, provided we know these sums as far as that sum of

the powers whose order is equal to the number of unknown coefficients, i. e.,

to the degree of the equation.

Hence, to arrive at the transformed equation, we determine, first, of what

degree this equation is to be. We next find the sums of the first, second, &c.,

powers of its roots, as far as the sum of the powers whose order is equal to

the degree of this transformed equation; then, by means of these sums, we
calculate the unknown coefficients. It is clear that these different sums are
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symmetric functions of the roots of the proposed equation, and that they cau

be expressed by the coefficients of this equation. Hence they can readily be

determined.

363. As an illustration of the preceding method, I will resume here the

question of the equation of the squares of the differences, already treated of

in Art. 278. Symmetric functions give the most simple and elegant solution

of which it is susceptible. The question is this :

To find the equation whose roots are the squares of the differences of the

roots of a given equation,

xra+Pxm
-1+Qxm^2

H-----=0 ........ [A]

Represent the transformed equation by
zn+j9z

n- 1+9z
n-2+rz

n-3+ ----+ /z+w=0 . . . [B]

The m roots of [A] being a, 5, c ... those of [B] will be

(a Z>)

2
, (a c)

3
, (a d)*,

. . . (b c)
2

,
. . . (b d)*, (cd)*, . . . &c.

The number of these squares is evidently that of the combinations, two and

two, that can be made with the m quantities, a, b, c . . .
;
hence the degree of

the required transformed equation will be n=\m(m 1).

The coefficients p, q,
r . . . may easily be found when we know the sums

of the similar and entire powers of the roots of equation [B] ; since the sum

of the first powers is equal to that of the ?i-
th
powers. Let us designate these

new sums, then, by/i,/3,/3 , &c., and find the general value of/a , a being any

entire and positive number whatsoever.

The roots of the equation [B] are, as has already been stated, (a b}", &c.

Raising these roots, then, to the power a, we have

/ = ( &)*"+( cr+(a <0
aa

. . . + (6-c)
2a+, &c.

In order to find this sum, consider the expression

t(x)= (x a)v+(x by*+(x c)
2a+ ----

which contains the m binomials x ,
x 6, x c ..... If we make in this

expression successively x=a, 6, c, . . ., and add the m results, we evidently

obtain

a . . .

If we develop the powers which compose y(x), we find

2(1a~ l

or, more simply, by using the notation SM S 2 , &c.

2a(2a 1)

t(x)=m&* 2aS.^-'+ \ ^ 2

;

S.2.r
2

Substituting a, b, c ... in this expression instead of x, and adding the re-

sults, we obtain

=mS,a 2oS,S sa_,4

In this second member it will be perceived that the terms at an equal dis-

tance from the extremes are equal ; consequently, stopping at the middle term

of the expression, and taking only the half of that term, we have the general

va'-ie offa ,
to wit,
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=mSia 2aSiSi^.iH-- -
SjSja-s ----

|
...

1 . -2 . 3 ... a a "'

As the signs are alternately -|~ an<^ there will never be any uncertainty
as regards this last term. Let us view, then, the operations which must be

performed.

1. We calculate the sums Si, S3, 83.. up to SM by means of the known
relations S,+P=0, Sa+PS 1+2Q=0, &c.

2. In the formula which expresses fa we make successively a=l, 2, 3,

. .n, and we thus have, to determine the n svaas f\, f*, f^, ...fm

fl=mSi S,S,,/2=mS4 4SiS3+3S3S>, &c.

3. Finally, the relations existing between these n sums and the n coeffi

cients p, q, r, ... will give the values of these coefficients, viz.,

364. A method entirely analogous to that which has been employed in find

ing the equation of the squares of the differences can be employed in a great

number of cases, and particularly in those where the roots of the transformed

equation are similar, and entire powers of the difference, of the sum, of the

product, or of the quotient of any two roots whatsoever of the given equation.

For example, suppose that each new root is to be the power k of the sum

a-{-b of two roots of equation [A]. Taking n=im(m 1), the transformed

equation ought to have the form

2"4-_p2-
1+^n-2+ ----H-+ "=0 ..... [C]

and if we make

fa=(a+b)*"+(a+c)*+ . . . +(6+c)
ta+, &c.,

the calculation will reduce itself to expressing^, by a general formula. To
do this, we take the function

the development of which is

But if, before the development, we substitute in <?(x) successively a, 6, c,

. . .. instead of x, the sum of the resultants will be equal to ^A+S^S^;
hence it is easy to perceive that by making the same substitutions in the

development, we shall have

Finally, we derive from this equation the required formula,

k(^ 1

-)SJSko_3 , &c.

When ka is even, we stop at the term which contains S with two equal in-

dices, and we take only the half of it ; but when ka is uneven, we stop at the

term in which the two indices are ^(ka 1) and ^(A-a-j-1), and we take the

entire term.

QUADRATIC FACTORS OF EQUATIONS.

365. Every equation of an even degree has at least one real quadratic factor.

Let the proposed equation be

EE



43i ALGEBRA.

in
+^j.r

n- 1

4-_p2.r
n-3+ ----f-pn=0, having roots c, 6, c, &c., and let n=fy, ju

being an odd number. Let it be transformed (Art. 362) into an equation
whose roots are the combinations of every two of its roots, of the form y= a

-\-b-\-mab, m being any number; also, let the transformed equation be

m (?/)
= 0; then its coefficients will be symmetrical functions of fl, 6, c, &c.,

and, therefore, rational and known functions ofpi, p 2 , &c. ; and its degree will

be ----
, which is odd; therefore, <j>m(y)=0 will have at least one real root,

whatever be the value of m. Hence, making m= l, 2, 3, ... 1^(2^ l)-fl 1,

successively, each of the equations <j> l(y)=Q, 0.2 (?/)
= 0, &c., will have at least

one real root; that is, we shall have p(2/j. 1)+ 1 real values for combinations

of two roots of the proposed equation, of the form a-\-b-\-mab ; buj^here are

only ^(2^ 1) such combinations which are differently composed of the roots

a, b, c, &c. ; therefore, two of these combinations, for which we have obtain-

ed real values, must involve the same pair of the quantities a, b, c, &c. ; let

this pair of roots be a, i, and a, a', the real roots of the corresponding equa-
tions

<j>m(y)=Q, <pm,(y)=Q, so that

a-\-b-{-mab=a, a-^-b-\-m'ab=a' ;

therefore, a-f-6 and ab are real, and the proposed equation has at least one

real quadratic factor, and two roots, either real, or of the form ai/3-\/ 1.

Hence every equation whose degree is only once divisible by 2 has at least

one real quadratic factor.

We shall now prove that if it be true that every equation has at least one

real quadratic factor when its degree is r times divisible by 2, or when n=2 r

fi,

where n is odd, the same is true when the degree of the equation is r-\-1

times divisible by 2. For, let n=2r+1
/tt; then the degree of the transformed

equation will be 2 r

/u(2
r+1

j

a
1), which is only r times divisible by 2

; therefore,

by supposition, the transformed equation, 6m(y)= Q, will have two roots, either

real or imaginary. If they are real, then, exactly in the same way as for the

preceding case of the index being only once divisible by 2, it may be shown

that the proposed equation has at least one real quadratic factor. If they are

imaginary, we shall have i/
= a r{I|g-Y/ 1, each of which expresses the value

of some one of the combinations a-\-b-^-mdb, a-}-c-\-mac, &c. Suppose,

therefore, that we have a-^-b-^-mab=a-^-f3 -^ 1 ; then, as shown above, we
can give m such a value m', that

<t>m,(y)= shall have a root corresponding to

the combination of the same letters, so that a-l
!-b-\-m'ab=a.'-\-{3' / 1 ; from

which equations we can obtain values of ab and a-\-b under the forms

a+b=y +6 J I,

ab=y'--6' -y/ 1 ,

... z2
(y _|_(5 /Zijar+y'+d' -/"Zi is a factor off(x) ;

but if any real expression have a factor of the form M-j-NV 1, it must also

have one of the form M N / 1 ;

... a (y_<JV"=T)-T+/ *' V^l is a factor of/(.r) ;

if, therefore, these two expressions have no simple factor in common, their

product will be a biquadratic factor of/(.r),

which can always be resolved into two real quadratic factors. (See solution

of Biquadratics.) If they have a factor in common, since they may be written
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it can only be of the form x e; and the factors themselves become

and, therefore, the proposed equation admits the real quadratic factor

(-*?+*
Hence an equation whose degree =2C+ 1

/
1 will have a real quadratic factor,

provided an equation whose degree =2r

p has one ; but we have proved this

to be the case when r=l ; therefore it is universally true that every equa-
tion of an even degree has at least one real quadratic factor. If now this fac-

tor be expelled, the depressed equation will have its coefficients real and its

degree even, and will, therefore, as before, have one real quadratic factor.

Hence the first member of every equation of an even degree may be resolved

into real quadratic factors.

366. Hence if we divide the first member of any equation

by a^+ox-J-fe, admitting no terms into the quotient that have x in the de-

nominator, we shall at last obtain a remainder of the form Aar-J-B, A and B
being rational functions of a and 6: and in order that xs

-\-ax-\-b may be a

quadratic factor of the proposed equation, it is necessary and sufficient that

this remainder should equal zero for all values of x, which requires that we
separately have A=0, B=0. The different pairs of values, real or imaginary,
of a and 6 which satisfy these equations will give all the quadratic factors of

the proposed: and as the number of these factors is n(n 1) (Art. 244, Cor.

2), the final equation for determining one of the quantities a, b, obtained by

eliminating the other between the two preceding equations, will be of the

degree n(n 1), which exceeds n, if n^>3 ; therefore, the determination of

the quadratic factors of an equation will generally present greater difficulties

than the solution of the equation.

As the proposed equation has necessarily n or \(n 1) real quadratic fac-

tors, according as n is even or odd, there will always exist the same number

of pairs of real values of a and b, satisfying the equations A=0, B=0 ; and

if any of these pairs of real values be commensurable, they may be easily

found ; and the commensurable quadratic factors being known, the equation

may be depressed.

EXAMPLES.

(1) To resolve x* 6x*-{-nx 3=0 into its factors. Dividing by x*-{-ax-{-b,

we find a remainder,

(n+2a&4-6a a3
)* (a

s& b3 66+3) ;

therefore, to determine a and b, we have

n+2ab+ 6a a3=0,
a*6 fc

2 6i+3=0.

Solving the former with respect to b, and substituting in the latter, we find

(a* 4)
3=n3

64, or a=V 4+ V 2 64 ; from whence 6, and the other

quadratic factor.

xtax+d1 b 6,

may be determined.
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(2) The resolution of x4 -^-px
s
-\-qx

z
-{-rx-{-s into its two quadratic factors,

r2-{-mx-\-n, x"*-\-m'x-\-n, may be effected by the following formulae :

r qm-^-pm? m3 r qm'-\-pm'* m'3

p 2m p 2m'

where z is a root of the equation,

z3 (3p'
2

8q)z^-{-(3p* l6p
3
q-{-l6q

z
-{-16pr6is)z (8r

which has necessarily a real root.

ELIMINATION BY SYMMETRIC FUNCTIONS.

367. Symmetric functions furnish a method of elimination which has the

advantage of making known the degree of the final equation.

Let the two equations be

-3--=o (i)
-3 -..=0 (2)

in which P, Q..., P', Q'. .. are functions of y. If we could resolve (1) witn

respect to x, we would derive from it TO values, a, 6, c..., of x, which would

be functions of y ; and, by substituting these values of x in equation (2), we
would have, for determining the values of y, m equations free from x, viz.,

-3...=
()[.

.... (3)

c n+P'c n- 1+Q'c n-2+R'c n-3
. . .= S

&c. &c.

But, in general, the resolution of equation (1) is impossible, and the prob-

lem is to obtain a final equation which embraces all the values of y without

distinction.

We shall have an equation which will fulfill this condition by multiplying

together the TO equations (3), for the resulting equation will be satisfied by
each value of ?/ derived from any one of them, and it can not be satisfied in

any other way. But the factors of this resultant can only change places,

whatever permutations we may make between the quantities a, 6, c . . .
; the

product, then, will only contain entire and rational symmetric functions of

these quantities : hence we shall be able to express these factors by means

of the coefficients of equation (1), and in this way we shall have the final equa-

tion in y.

This method of elimination leads, in general, to very tedious calculations ,

but it has the advantage of giving a final equation containing all the roots that

it ought to embrace, without any complication of foreign roots.

368. This method has also the advantage of leading to a general theorem

with respect to 'the degree of the final equation. In the preceding article the

first equation is of the degree TO, the second of the degree n, and P, Q..., P',

Q'... are any functions whatsoever of y ; but, for the theorem in question,

these functions must evidently be polynomes, such that the sum of the ex-

ponents of x and y shall be, at most, equal to m in each term of equation (1),

and, at most, equal to n in each term of equation (2). We have, then, to de-

termine to what degree y can be raised in the -symmetric functions which

compose the product of equations (3).

Each term of this product is the product of TO terms taken respectively from
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the m equations (3) ; hence, designating these terms by Ya", Y'6 , Y"cy, the

terra of the product will be YY'Y". . . a
n
b^cr ... But the product of these m

equations being symmetric with respect to the quantities a, b, c..., all the

terms should have the same form with the one that we have given above ;

consequently, we know that the product embraces all the terms represent-
ed by

YY'Y"...xS(a
a
6<V'...) (4)

We have now to determine the degree of y in this expression. Observing
that the degree of y in Y is, at most, equal to n a, in Yr/ to n /3, in Y" to

n 7, &c., we shall readily see that in YY'Y". .. its degree will be, at most,

equal to mn a /? y On the other hand, if we refer back to the rela-

tions (Art. 356) from which the sums %, S-2, S3 , &c., are derived, we shall

see that, P being, at most, of the first degree in y,^ of the second, R of the

third, and so on, the degree of y in these sums can not surpass the subscript

number of S ; and, in like manner, if we refer (Art. 359) to the formulas

which express double, triple, &c., functions, we shall perceive that in

S(a
a
Zrc3

'

. .
.)

the degree of y can not surpass a+j3+}'--- Hence in expres-

sion (4) the degree of y will be, at most, equal to mn.

The same remark will apply to all the symmetric functions whose sum

composes the product of the m equations (3) ; therefore, lastly, the final equa-
tion can not be of a degree superior to mn.

The demonstration seems to require that equation (1) contain m. But wo
can suppose that at first xm had a coefficient, A, independent of y, and that we
have divided the whole equation by A. The final equation ought to subsist,

whatever may be the value of A ; we can make A=0, and it is evident that

this supposition will not raise the degree of the final equation. Finally, the

theorem is to be thus understood : that the elimination between two general

equations, the one of the degree m, the other of the degree n, ought to give a

final equation of the degree mn ; but that, in particular cases, the degree of

the final equation can be less than mn.

EXAMPLES.

The two equations, x y
m=0, xu

-^-ay
a
--by-\-c=Q, although very simple,

will give a final equation fully of the degree mn ; for, by substituting in the

second the value of x derived from the first, it becomes y
mn

-^-ay
a
-{-by-{-c=Q.

On the other hand, in eliminating x between the equations z y
m=Q,

x*-\-ay"-{-by-{-c=(), we obtain a final equation of a degree less than 7/171, viz.,

y
m+ay"+by+c=0.
369. For extending the theorem to any number whatsoever of equations,

we have the general theorem given by Bezout, viz., that If, between equations

equal in number to that of the unTcnowns, we eliminate all the unknowns, except

one, the degree of the final equation will be, at most, equal to the product of the

degrees of these equations.

Before Bezout, the theorem had been known for the case of two equations ;

and Cramer, in the appendix to his Introduction to the Analysis of Right

Lines, has given a very simple demonstration, which, in reality, does not differ

from that which we have stated. It has been a desideratum that the same

demonstration should be capable of being applied to all other cases ; this has

been accomplished by Poisson, in a memoir which appeared in the eleventh

volume of the Journal de Vficole Polytechnique.
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METHOD OF TSCHIRNHAUSEN FOR SOLVING EQUATIONS.

370. As another application of the theory of elimination, we shall briefly

illustrate the principle upon which Tschirnhausen proposed to accomplish the

general solution of equations, but which, as observed at Art. 277, was soon

found to be of but veiy limited application, not extending beyond equations of

the fourth degree ; and, even within this extent, too laborious for general use.

The principle consists in connecting with the proposed an auxiliary equation

of inferior degree with undetermined coefficients, and of as simple a form as

possible consistently with the office it is to perform, but involving, besides the

unknown quantity x, a second unknown y. The unknown, common to both

equations, is then eliminated according to the method at Art. 315, and a final

equation in y thus obtained, of whicn the coefficients are functions of the un-

determined coefficients in* the auxiliary equation. The arbitrary quantities,

thus entering the coefficients of the final equation in y, are then determined

so as to cause certain of these coefficients to vanish ; by which means the

equation is ultimately reduced to a prescribed form, supposed to be solvable by

known methods.

371. As an example, let it be required to reduce the cubic equation

&+ax*+bx+c=0 ...... (1)

to the binomial form

2r+fc=0.

Assume an auxiliary equation

a?4-a'z+6'+y=0 ....... (2)

and eliminate x from (1) and (2) in the usual way. The remainder arising

from dividing the first member of (1) by the first member of (2) is

(a'
2 aa'+ i b' y)z+(a' a)(b'-}-y)-{-c,

which, equated to zero, gives

x_ (a-a')(b'+y)-c
_

a"2 aa'-{-b b' y
'

and this value of x, substituted in the proposed equation, transforms it, after

reduction, into the form

y*+hf~+iy+k=0 ...... (3)

where
h=3b' aa'+a

12 2b

i=36'2
2b'(aa' a3+2&)+a'

2&

-f(3c a&K+i2 2ac

k= b'3 ab'*a'+ bb'a"> ca'3+(a2
2Z>)6'

2+
(3c a6)a'&'+aca'

2+(&2
2ac}b' Ic.a'+c*.

Hence, in order to reduce (3) to the prescribed form, we must determine
'

the arbitrary quantities a', b' conformably to the conditions fe=0, i=Q ; that

is, these quantities must satisfy the equations

3b' aa'a2 26=0

(3c ai)a'+i
2 2ac=0,

of which the first is of the first degree with respect to a' and b', and the other

of the second degree, so that their values may be determined by a quadratic

equation. And these values, or, rather, the expression for them in terms of
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the given coefficients, being substituted in the preceding expression for k, ren

der that symbol known ; and thus the required form

is obtained.

372. In a similar manner may the general equation of the fourth degree

tf+aif+bxi+cx4-^=0
be transformed into one of the form

which is virtually a quadratic, by eliminating x from the pair of equations

which elimination will conduct to a final equation in y of the form

from which the second and fourth terms will vanish by the equations of con-

dition

g=0, i=0,
the first of which will be of the first degree as regards the arbitrary quantities

a', 6', and the second of the third ; both quantities are, therefore, determina

ble by means of an equation of the third degree, and thence the quantities

h, k, which are known functions of them.

All this is very laborious, but it really does effect the object proposed thus

far ; that is, it reduces the solution of equations of the third and fourth de

grees to those of inferior degrees ; but beyond this point the method fails, as

the conditional equations resolve themselves ultimately into a final equation
that exceeds in degree that which they are intended to simplify.

On this subject we may add that Mr. Jerrard has greatly extended the prin-

ciple of Tschirnhausen, and has succeeded in reducing the general equation
of the fifth degree .

2*4-Ar*+A^r3-!-A*r-fAr+N=0
to the remarkably simple forms

lO+ox*4-6=0
r5 4- 0x3+6=
;r
6
+a:r

a+6=0
a-
5
-fax +6=0;

so that the solution of the general equation of the fifth degree might be con-

sidered as accomplished if either of the above forms could be solved in general

terms.

For a very masterly analysis of Mr. Jerrard's researches, the reader is re-

ferred to the paper of Sir W. R. Hamilton in the Report of the sixth meet-

ing of the British Association.

METHOD OF LAGRANGE FOR SOLVING EQUATIONS.

373. A remarkable application of the theory of symmetrical functions is that

made by Lagrange to the general solution of equations ; by that means he

solves the general equations of the first four degrees by a uniform process,

and one which includes all others that have been proposed for that purpose.

the common relation of which to one another is thus made apparent.

It consists in employing an auxiliary equation, called a reducing equation.

whose root is of the form
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S'l-f
a-?2+ a2-f:i+ + a~1

-?n>

denoting^ by Xi, x.2 ,
. . rn the n roots of the proposed equation, and by a one of

the tb roots of unity ; and the principle on which it is based is as follows :

Let y be the unknown quantity 'in the reducing equation, and let

2/r=a l
.r 1 4-a.2.r,+ . . . -}-an:rn ,

ai, as , . . . a n denoting certain constant quantities ; then, if n 1 values of y,

and suitable values of the constants alt a2 , . . . a n , can be found, so that we may
have n 1 simple equations, these, together with the equation

will enable us to determine the n roots.

Now, supposing the constants in the value of y to preserve an invariable

order, cj, a2 , &c., since the number of ways in which the n roots may be com-

bined with them to form the expression a 1a:1+ aj.r.2+, &c., is the same as the

number of permutations of n things taken all together ; therefore, the expres-

sion for y will have n(n 1) . . . 3.2.1 values, and the equation for determining

ij
will rise to the same number of dimensions, or will be of a degree higher

than that of the proposed equation ; hence the method will be of no use, un-

less such values can be assumed for the constants a
} ,

a2 ,
. . . an as shall make

the solution of the equation in y depend upon that of an equation, at most, of

n 1 dimensions. Now this may be done (at least when n does not exceed

4) by taking the n& roots of unity o, a, a2
, a3

,
... a"-1 for a,, a.2 , . . . a n ,

so that

For, in the first place, with this assumption, the reducing equation will

contain only powers of y which are multiples of n ; for, since an r=l,

which is the same result as if we had interchanged x t and :rr+i, Xj and .rr+; ,

&c., so that if y be a root of the reducing equation, an~ T

y is also a root ; there-

fore, the reducing equation, since it remains unaltered when an~'y is written

for y, contains only powers of y which are multiples of n ; if, therefore, we
make y

n=z, we shall have a reducing equation in z of only 1.2.3 . . . (n 1

dimensions, whose roots will be the different values of z which result from

the permutations of the n 1 roots x.* xs , . . . x n among themselves. We shall

now have, expanding and reducing,

z=2/
n=M -f-"ia+w.2a

2
-|- . . . +Mn_1

an
~1

,

in which UQ , lt w2 , . . . n_i are determinate functions of the roots, which will

be invariable for the simultaneous changes of Xi into .r^, x.2 into 2rr+3 , &c.,

since z= (a
r

y)
a

;
and when their values are known in terms of the coefficients

of the proposed equation, we shall immediately know the values of the roots.

For let z , zi, z2 ,
. . . z n_! be the different values of z, when 1, a, /?, y, . . . A,

the roots of y" 1=0, are substituted for a; then, since y= Vz ) we have

Xl+Xi+ ' ' ' + 3'n= VZfl

.T1 -f-a.r2+ . . . 4-a
n- 1

jrn= Vzi

therefore, adding, and taking account of the properties of the sums of tho

powers of 1, a, 3, y, &c., (Art. 357, [2]), we get
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Again, multiplying the above system of equations respectively by 1, an1 ,

. /."-1
, we get

nx.2=
and so on for the rest. Hence, since p L= V~<* and .-.

( ^^1 )
!)=ro=t/

-f-Wi-f- . . -\-ua i, the problem is reduced to finding the values of wlf i^, . .._!.

374. When n is a composite number, the above general method admits of

simplifications. For let n have a divisor m, so that n=mp, and let a be a root

of y
m 1=0; then, since am=l, am+1=a, am+-=a'J

, &c., a2m=l, o2m+1=a,
&c., we have

=X 1+aXs+a*X3+ + am-1Xm ,

where X r=xr+xm+r+r3m+r+ . . . +xn_m+n and consists ofp roots;

where <>, i, &c., are known functions of Xi, X2 , &c. ; and when they are

found in terms of the coefficients of the proposed equation, we shall be able to

determine immediately the values of X1} X;, &c., as before. To deduce the

values of the primitive roots xlt x.2, z3 , . . . xu , we must regard separately those

which compose each of the quantities Xj, Xi, &c., as the roots of an equa-
tion of p dimensions. Thus, let the roots whose sum is X! be those of the

equation

iP_X 1a*-1+La*-a Ma*-3+ . . . =0,
where L, M, &c., are unknown ; then the first member of this equation is a

divisor of the first member of the proposed, since all its roots belong to the

latter. Hence, effecting the division and equating to zero the coefficients of

x* 1
, arP"3, <5cc., in the remainder, we shall havep equations in Xi, L, M, &c.,

of which the first p 1 will give the values of L, M, &c., in tenns of X! by
linear equations. It will then remain to solve the equation so formed of p
dimensions. Similarly, substituting the value of X 2 in place of that of Xi, we
shall have an equation giving the next group of roots x2 , x^^, &c. ; and so on

EXAMPLE I.

Xs px--\-qx r=0.

Let the roots be a, 6, c, and let

y=a-\-al>-{-a-c ;

But MI, u~2 are roots of the quadratic

tt
3

(ui-\-ui)u-^-u 1ua=Q,
and uI+w-;:=3!(a-Z>)= 3/>9 9r (Arts. 357, 359),

Hence MI, w* are known,

and .-. t/ =|J
3

( l+ua), is known.

Hence, denoting by z t , z-2 , the values of z when a and o5 are respective/}

written for c, we have
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a-\-b-\-c=p

from which we obtain the values of a, b, and c, viz.,

EXAMPLE II.

x* px*+ qx* rx+ s= 0.

Since 4=2.2, let a be a root of y^ 1=0, so that o2=l ;

then y=xl -\-ax<i-\-Xz-{-axi=.~Ki-{-aX,fr

if X^Zi+Zg, X2=z2 -|-;r4 ;

where t< =X
i
4-X2

, W!=2XiX2 , and

Hence 1 =2(:r1 -|- xs)(x^-{- x4), by interchanging the roots among themselves,

will admit the two other values 2(xi-\-x.2)(x3 -{-x4 '),
and 2(x1 -\-x4 )(x.2 -\-x3 ), and

will, therefore, be a root of an equation of the form

ttJMitJ+Ntt! P= 0;

the coefficients being symmetrical functions of Xi, x2 , x3 , xv and, consequently,

assignable in terms ofp, q, r, s. It is easily seen thai; ifwe make u
l=2q 2u,

we shall have an equation in u whose roots are

and the transformed equation is (Art. 362)

us
qu?-\-(pr 4s)w (p

2

4q)s r3=0.

Let u' be a root of this equation, then w 1 =2<? 2u'
; hence, making

Hence a:,, .r3 may be regarded as roots of a quadratic z2
X,ar-|-L=0;

dividing the proposed by this, and putting the first term of the remainder equal

to zero, we find

XJ-g~
therefore, a;,, x3 are known; and z2 , x4 will result from the same formulae

by interchanging X, and X 2 , or by changing the sign of the radical \/z l
.

EXAMPLE III.

Xn

-=0, ra being a prime number.

If r be one of the roots, and a be a primitive root of the prime number n

(that is, a number whose several powers from 1 to n 1, when divided by n,

leave different remainders), it will be proved hereafter that all the roots of

chis equation may be represented by

T, ra , ra2 , ra3, . . . r""""2 .

IAet y= r+ ara+ a2y
"a2 H h an

~vn 2
,
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a beiug a root of the equation i/

"1 1=0. Therefore, observing that an
~1= l

and rn= l,

z=y"~
1= 4-a t+oa ^---- +a^-aw_J, .... (1)

u , ,, &c., being rational and integral functions of r which do not change by
the substitution of r", r"J, r

3
, <kc., in the place of r; for these quantities, re-

garded as functions of ,, x3 , z3 , &c., do not alter by the simultaneous changes
of or, into x 2 , x2 into x3 , ice., nor by the simultaneous changes of x

l into xz ,

x a into r 4 , &c., to which correspond the changes of r into r", into T<&, &c.

Now every rational and integral function of r, in which 7*=! may be re-

duced to the form

A+Br-fO2+Dr+ ____J-Nr
1
,

the coefficients A, B, C, . . . N being given quantities independent of r ; or,

since in this case the powers r, r4, r3,
. . . T*"1 may be represented, although

in a different order, by r, r<*, r"3, . . . r"""^, we may reduce every rational

function of r to the form

A+Br-j-O+Dr^-f ----|-Nr
c- :

.

Therefore, if this function is such that it remains unaltered when r is

changed into r", it follows that the new form

coincides with the preceding ;

.-. B= C, C=D, D=E, &c., N=B,
and therefore the function is reduced to the form

A+B(r+ra-f r<&-\-----h 7**"5
)'

or A B,

since the sum of the roots = 1; hence each of the quantities , ult ,,

&c., will be of the form A B, and its value will be found by the actual de-

velopment of 2 =y*~
1

; so that we have the case where the values of HO, w.; ,

&c., are known immediately, without depending upon the solution of any

equation. Hence, ifwe denote by 1, o, J3, y, &c., the n 1 roots of the equa-
tion z"- 1 1= 0, and by ZQ, Zi, z.2 , &c., the value of z answering to the substi-

tution of these roots in the place of a in equation (1), we shall have, as in the

former cases,

n-1
an expression for one of the roots of the equation i 1=0 ; and the other

roots are r2, r*, &c.

Thus, the solution of x 1=0 is reduced to that of the inferior equation

y*"
1 1=0, of which 1, a, ,3, y, &c., are the roots ; also, since n 1 is a com-

posite number, the determination of a, p, y, &c., will not require the solution

of an equation of a higher degree than the greatest prime number in n 1 :

that is, the solution of .T 1=0 (n prime) may be made to depend upon the

solution of equations whose degrees do not exceed the greatest prime number,
which is a divisor of n 1.

EXAMPLE IV.

^1= 0.

The least primitive root of 5 is 2 ; for the powers of 2 from 1 to 4, when
divided by 5, leave remainders 2, 4, 3, 1 ;
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also o4=l, ^=1, andr+r2+r4+rs= 1:

.-. z=
?/
4= l+ 4a+ 14a2 16a3

.

But the four roots of y
4 1=0 are

1, -1, V~~i, -V^l? _
.-. z =l, Zi=25, za= 15+20 V l,

23= 15 20 V 1;

.-. a:==jL|_l+ -V/5+V 15+ 20 -v/ 1+V 15 20 V 1|.

375. For the proof that, in the general equation of the na>
degree, the

formation of the reducing equation will require the solution of an equation of

1 . 2 . 3 ... n
1.2.3... (n 2) dimensions, when n is prime ; and of -.

'

'

dimensions, when n is a composite number, and =mj), where m is prime ;

and that, consequently, the method fails when n exceeds 4, the reader is

referred to Lagrange's Traite de la resolution des equations numcriques, note

xiii., from which the matter of this section is taken.

RESOLUTION OF THE GENERAL EQUATIONS OF THE THIRD AND
FOURTH DEGREES.

RESOLUTION OF THE EQUATION OF THE THIRD DEGREE.

376. I shall suppose that we have made the second term of the equation of

the third degree disappear, and, to avoid fractions, I will write this equation
under the form

a*+3pz+2q=Q (1)

Among the different modes of resolving it, the most simple consists in form-

ing a priori an equation of the third degree, without a second term, which ad-

mits of one known root, but expressed with indeterminates, and to make use

afterward of these indeterminates to render the equation identical with the

proposed equation (1). To establish this identity, it will be necessary to

write two equalities, and for this reason we employ two indeterminates.

Let there be made x=a-\-b : the cube will be r)=a3+63
+3a6(a+6) ;

then, replacing a+6 by x, and transposing, we shall have

xs Zabx a3 63=0 (2)

an equation which admits the root x=a-\-b, and which it is necessaiy to ren-

der identical with equation (1). Therefore we place

ab= p, as+b3= 2q . . . . (3)

The first of these equalities gives asb s= p*. Thus we know the sum
a3+i 3

, and the product asb3
. Then the values of a3 and b3 are roots of an

equation of the second degree, in which the coefficient of the second term is

equal to +2<?, and the last term equal to p3
(see Art. 191) ; so that this

equation will be, calling z the unknown,

z2+29z p3=0.
This is called the reduced equation.
Its two roots represent the values of a3 and ba

; moreover, we can take

either of them indifferently for the value of a3
, because this amounts to chang-

ing a into 6, and b into a, in the value .r=a+ 6. I will take
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&=_?- V~

' =V -9+ Vq2+P\ b =V -9- Vf+P3
-

ach radical of the second degree here has but one value, but each one of

the third degree has three. If we could satisfy equation (3) without making

any choice between these values, we could also, by the same values, render

equation (1) identical with equation (2); and since a-\-b is a root of the sec-

ond, the first ought to be satisfied by taking

=V -<?+ VT+^M-V -<?- (4)

which is the formula of Cardan.

But an important remark presents itself: it is, that since each radical of the

tbird degree has three values, the above expression must have nine, while

ibe equation (1) ought to have but three roots. It is necessary to explain,

then, whence comes this multiplicity of values, and to discern among them

which ought to be true roots of the equation (1).

For this purpose, let us observe that, properly speaking, it is not the reso-

lution of equations (3) which has given a and 6, but rather the equations

(fb3=p3
, a?+b3= 2q ... (5)

Now if we designate by a and o3 the two imaginary cubic roots of unity,

which, as we know, are the one the square of the other, it will be readily

seen that the equation a363= p3 may result indifferently, from raising to the

cube these following :

ab= p, ab= ap, db= a?p.

Hence it follows that the nine values contained in formula (4) ought to give

the roots of the three equations,

z-f 3px+2j=0, rJ

4-3opx+2?=0, x3+3crpx+'2q=Q ..... (6)

We can, moreover, consider these nine values as the roots of the equation

of the 9 degree, which would be obtained by multiplying together the three

equations (6). But it will be more simple, and will amount to the same thing,

to raise to the cube either one of these equations, after transposing to the

second member the term which contains p. In this manner we find at once

As to the roots which belong especially to each of the three equations, what

precedes furnishes the means of distinguishing them ; because, according as

the coefficient of x shall be 3p, 3ap, or 3a-p, it is clear that we ought to add

only the values of a and b, for which we have ab= p, or ab= ap,

or ab= a~p.

By this rule it will be easy to form the roots of the proposed equation
;r

s

-f-3/J.r-f-22=0, the only one with which we have to do. Designate by A
one of the values of the first cubic radical, and by B one of the values of the

second ; the values of a and b will be

a= A, aA, a*A; 6=B, aB, a-B.

Moreover, suppose, for this is admissible, that A and B represent the values,

the product of which is p. From what has just been said we ought to add

only the values, the product of which is AB ; then, recollecting that 0=!,
we must take
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.T=

and, besides, we know (303) that we have

,
.

If we replace A and B by the two cubic radicals, and a and a9 by
values, we shall have

*=V -<?+ Vg2+p3+V -q- Vq*

x=-l-V-3
2

These are the roots of the proposed equation, but we must take care to at-

tach to the two cubic radicals the same restricted sense as to A and B, with-

out which we should find false roots.

377. To discuss these values, it will be more convenient to leave A and B
substituted for the cubic radicals, and to isolate the one which is multiplied by

\f 3. By this means we have

.r=A+B,
A B -

A-B ;

-

I shall suppose, also, as is done ordinarily, that the coefficients 3p and *2q

represent real quantities. Then equation (1), being of an uneven degree, has

always one real root, and it is admissible to suppose that A and B are the

values of a and b, which give this root; so that A+B will be a real quantity.

This being premised, let us return to the two radicals

=V -
If qV^-pZ^>Q, each of them has one real value ; then we can suppose A and

B real. Consequently, A+ B and A B will be so also ; then the first root

:r=A+B is real, and the other two are imaginary.

If
<jr

2+>3= 0, we have A=B, and then the three roots will be =2A,
.r= A, x= A. They are all three real, and the last two are equal with

one another.

Finally, let
<7

2+>3 <0, which requires p to be negative. Then a and 6

have no longer any real determination, and, consequently, the three values of

x are found complicated with imaginary quantities. However, we know that

one of them must be real, and, indeed, it is evident that the cases in which

the three roots of equation (1) are real and unequal can only be found on the

hypothesis in question, that 5
2+^3

<CO, as may be seen by referring to the

supposition just above of 5
2
+jp

3>0. It would be wrong, then, to affirm that

the values of x are imaginary. I will prove, in fact, that neither of them are

so ; and as we can always suppose that A and B are determinations such that

the sum A+B represents the real root, the existence of which is demon-

strated, the whole is reduced to showing that the part g(A B) \/ 3, which
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is found in the other two values of x, must be real. By the rules of algebra

alone we have (A B)(A
2+AB+B 2)=A3 B3

; then

A 3 B3 A3 B3

- AB*
A-B=

j

But, because of the values of a3 and of i3, we have A3 B3=2 v^-hp3
? and,

by the manner in which A and B have been chosen, we have AB= p ;

then, making A-r-B=:r
/

, there results A B=
; consequently

A-B ~

But by hypothesis we have q
a
-\-p

3 <^0 pthen the quantity above is real ; then

the three values of x are also.

It is thus demonstrated that, upon the hypothesis of q^+fP^Q, the imag-

inary quantities which affect the three values of x must destroy one another.

It would seem, therefore, that analysis ought to furnish the means of making
them disappear, but as yet it has not been found capable of effecting this re-

duction. For this reason, the case under examination has been called the ir-

reducible case. Whenever the equation falls under this case, the general ex-

pressions of the roots will be of no use in calculating their numerical values,

and then we can recur to the methods of Arts. 290-297.

EXAMPLES.

(1) r3 6z 9=0.
9 _ 7We have_p= 2, q= -

.-. i/f-\-p
s=-, which gives

Thus the three roots are

ar=3,

(2) 3^21x4-20=0.
Here 2}== 7 ' 9=10;

.-. i=V 10+9 -/^3+V 10 9 -v/^3-

This example is one of the irreducible case. The general value of x ap-

pears in an imaginary form, and yet the roots are real, being the numbers 1,

4, and 5, which, by substitution, will be found to verify the given equation.
378. The solution of the irreducible case may be obtained, also, bv the help

of a table of sines and cosines. We subjoin the method, for the benefit of the

student acquainted with trigonometry.

Solution of the irreducible case by trigonometry.

?os 2(9=2 cos : el
cos 30=2 cos 20 cos 6 cos 6
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Substituting the first expression in the second,

cos 30=4 cos3 03 cos 0.

Whence
3 1

cos3 07 cos 07 cos 30=0 (1)44 v '

In the proposed cubic equation, which we may write under the form

x3
-{-3px-{-2q=0 (2)

put the unknown r cos for x ; or, which is the same thing, put
- for cos 0,

and (1) becomes
3 1

x3 -r'ix-rz cos 30=0.
4 4

Comparing this with (2), we have

7T-
3 cos 30= 2g,4

,

and
3W2= 3p r=2 \/ p, which is real, p being negative ,

20 q
.-. cos 30==

pr VP*
Consequently, the trigonometrical solution of the proposed cubic equation,

that is, the determination of 0, and thence of r cos 0, depends upon the trisec-

tion of an arc, or the determination of cos 6 from cos 30.

The mode of proceeding by aid of trigonometrical tables is obvious ; we are

to seek in the table of cosines for the angle whose cosine is
q-\J 5;

this will

be the angle 30, and, consequently, one third of it will be ; and the cosine of

this, multiplied by r, or 2 V PI will give r cos 6=x for one of the real roots

of equation (2). As the given cosine, ?A^^> belongs equally to three arcs

viz., 30, 27r4-30, and 2n- 30, by taking the cosine of one third of each of the

latter two, we shall have the values of the remaining roots. Thus all the

three roots will be expressed as follows :

j 1

2 V p cos 0, 2 / p cos
3(2^4-30),

2 V p cos -(2?r 30).

Or, using the supplements of the two latter arcs instead of the arcs themselves,

and remembering that the cosine of an arc is equal to minus the cosine of its

supplement, we have somewhat more simply the three values of x in the fol-

lowing form :

2V p cos 0, 2-v/ j?
cos (60 0), 2VP cos (60 + 0).

This method, with a single exception, applies to the irreducible case ; for,

as the trigonometrical cosine of an arc is always less than unity, except when

that arc is a multiple of 180, we must have

When 30 is a multiple of 180, two roots must be equal.

The reducible case may also employ the aid of trigonometry.
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379. If in the expression

449

II /"/we put cot 0=-l-J , it becomes /-( cot OrL cosec *)?.
2\q/ V3

Hence, reducing, the real root of j?-^-qx-\-r=Q is

/? / if ?^\
. /!( tan3 - cot3 -

1 ;

V3\ 2 27

whkh, by putting tan -= tan3 0, may be further transformed into

2^ /! cot 26.

Similarly, the real root of z3
qx-\-r=Q, ^^T? becomes (by putting cosec

/3\l 6

SA cosec

380. The following method of arriving at a new and valuable formula for the

solution of cubic equations will be found an excellent exercise for the student :*

Let the given equation be

*+l+?=0 .................. (1)

Placing

x=m+y .................... (2)

we obtain

y+3mt^+(3m+Jp)y+m3+1Jm+ ?=0 ......... (3)

Taking

y=
we obtain

which gives

'

Placing

we find

T-

m3
-\-pm-{-q

g
'

3m
'

lt "

* It is the production of an old pupil of the authors, Mr. James S. Woolley, whom ill

health, and other discouraging: circumstances, have not prevented from making some im-

portant discoveries in algebra, which it would be premature at present to publish to the

world.

FF
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The value of ra, which renders the coefficient of to zero, may be found thus

Then
1* T fl n*

- -(8)

The value of w in (7), substituting the value of m. found in (8), is expressed
in the following four equations, (9), (9, a), (9, 6), (9, c), the last three being
obtained by decomposing (9) into factors.

**J "" r-i T*l / _.6 \ i V /

10= x (9, a)

w=
~7~f vT~<? h

" ' (9> 6)

T V
~~

2
^
V27^

3
"^ 4

X V 12^+ 81^i
w= - (9.c)

(^+^)(-l4^f)
Substituting in (6) the values of m and w, found in (8) and (9, c), we shall

have

Substituting in (4) the values of 2, given in (10), and decomposing one more
of its terms into factors, we shall have

r.(ll)

^A/27 4\ S^VS?^ 4^

Hence

(continuing the- numerator) (
8l
^3+

12
) (

(12)
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But the first term in the numerator of (12) may be transformed thus :

And the last term in the numerator of equation (12) is

Therefore the sum of the first and last terms of the numerator of (12) is

^V^+v-
Therefore,

54

Dividing both numerator and denominator by ^ ~-vfcr

/ q , f~l~ o2\ 3
J?

(-IWa^+j) -f

The numerator of this value of x is equal to

The denominator is equal to

Dividing numerator and denominator by the common factor, we have

2

q l tf'X
5

I

This formula may be reduced to that of Cardan by dividing the numerator

by the denominator, and observing that

q

we thus obtain

But the first form is preferable, as it gives only the three values which satisfy
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equation (1), whereas Cardan's formula gives nine values, six of which have

to be rejected.

A partial division gives

P

which is an advantageous form, inasmuch as but one third root has to be ex-

tracted, both radicals having the same form.

A shorter solution of the above might be given, but we have already extend-

ed our article on cubics sufficiently far.

IRRATIONAL EXPRESSIONS ANALOGOUS TO THOSE OBTAINED IN THE RESO-

LUTION OF EQUATIONS OF THE THIRD DEGREE.

381. One of these expressions is VA-i VB ;
but it frequently happens

that A and B are rational numbers, and then it may be possible to reduce

these radicals to simpler expressions, in which there are no longer radicals

over radicals. This problem has already been resolved for radicals of the

second degree, and it is now proposed to resolve it' with reference to radicals

of the higher degrees.

I shall commence with the cubic radical y A-|- VB. We can not suppose

for this root a quantity of the form V a-\- -\/b, for we have

= (a+ 3 b) V"a+ (3<z+ b) i/b,

a result which contains the radicals -\/a and -\/b. But the preceding calcula-

tion shows that we should have a result of the form A-f- \/B, by raising to

the third power the expression a-\- i/b and (a+ Vty v/ c - I will choose this

last expression as the more general ; we shall then have

A+ v
/l3= (a+ -b)c ........... .... (1)

Raising both members to the third power, it becomes A-|- -\/B=c(a
3
-}-3ab)

-\-c(3a
z
-\-b) ^/b ; equating the rational parts together, and the irrational parts

by themselves,

A=c(a3
4-3a&) .................... (2)

/B=c(3<z
2
+Z>) -/ ................... (3)

The problem, then, is, to find for a, b, c rational values which satisfy these

two equations. But squaring these equations, and then subtracting the one

from the other, we have

A2 B=c2
(a

6 3a4
&+3<z

2
Z>
3 &3

)=c
2
(a

2
6)

3
;

VTA2

B)c
hence a2 b= .

c

Since a and b ought to be rational, it will be necessary to take c such that

(A
2

B)c be an entire or fractional cube, which is always possible. Calling

the second member of the above equation M, we shall have a- 7;= M,
whence fesso 2 M. By substituting this value of b in equation (2), it will

become
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4C03 3Mca A=0 (4)

This equation must give for a at least a commensurable value, without

which the transformation (1) will be impossible.

If, instead of "y A-J- VB, we should have to reduce y A T/B, it would

suffice to change throughout in the preceding method the sign of -Jb.

For example, let the expression be "y 14JL \/200. We shall have A= 14,

B=200, A3 B= 4; hence (A
2 B)c= 4c; we shall then have the

perfect cube 8, by taking c=2. Consequently, M= 1, &=aj+l, and

equation (4) becomes 8a?-{-6a 14=0. It can be satisfied by the commen-
surable value <z= l, which gives 6=2. Again, we have already obtained

=2; hence, finally,

14 V200=

3/
Again, let the expression be "y lldtS'V 1- "W w^ P383 2 under tne

radical of the second degree ; we shall then have A= 11, Br= 4, A- B
= 125. As 125 is already the cube of 5, it will suffice to make c=l. Con-

sequently, we have M=5, 6=a3
5, and equation (4) becomes 4a3 loa

-|-11=0. But this equation is satisfied by the value a=l ; hence 6= 4,

and, consequently,

382. Let us consider the more general expression "y AJb VB> a d take

(5)

The problem, again, is to determine rational numbers for a, i, c, if it be

possible.

Raising (5) to the power n, and equating separately the rational parts, we
obtain

(n l)(n 2)(n 3)
c.] (6)1.2.3.4

-3
6+, &c.]^ .- v (7)

We can, as in the case of the cubic radical, square these two equalities, and

subtract the one from the other ; but the reductions will be immediately per-

ceived by observing that we ought to have, at the same time,

A+ VB=c(a+ -/&)
n

i A VB=c(rt
and that, consequently,

A3 B=c3(a+
V(A-

whence as o=
c

We see from this that it will be necessary to take c of such a value that the

second member of this last equation shall be rational. Calling this second

member M, we shall have a3 6=31, whence i=a2 M; substituting this
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value of b in (6), the resulting equation in a will have a commensurable root

every time that the transformation (5) is possible.

383. In the resolution of equations of the third degree, what renders the ir-

reducible case so remarkable is, that although we are assured that the three

roots are real, it is, nevertheless, impossible to make the imaginary quantities

disappear otherwise than by means of series. This difficulty is not confined

to the equation of the third degree ; it will be encountered equally in the gen-

eral formula

! ............ (&)

which formula I shall stop to consider for a moment.

To consider this expression in its most general sense, we ought to combine

the n determinations of the first part with the n determinations of the second,

so that we shall have, in all, n2 values. But the expression is rarely taken in

so general a sense, and I proceed to define that which we ordinarily attach

to it.

As the two radicals which have the index n represent the roots of the bi-

nomial equation, their determinations
'

are equal in number to the quantities

which have the form f-\-g V ! Moreover, it is manifest that to each de-

termination of the first radical there corresponds one of the second, which

only differs by the sign of </ 1. But we suppose that these corresponding

values are those which ought to be added in formula (8) ; and, with these re-

strictions, the values of a: are all real, and only n in number.

The product of these two radical values, thus taken in a same pair, is real

and positive ;
but for the product of the two radicals we have, in general,

VA+B <S~^i xV A B v~i= VAS+B,
and the radical which expresses this product can only have a single real and

positive value ; hence, if we represent it by K2
, we ought to be able to charac-

terize the conjugate values, which must be added in formula (8), by the con-

dition that their product be equal to K2
.

Formula (8) can be regarded as a general expression of the roots of an equa-

tion whose degree is marked by the number of values of which the equation

is susceptible ; hence, provided that it be taken in its greatest extension, or

with the restriction which we have just mentioned, the degree of the equa-

tion must be either n2 or n.

This last remark leads us to explain how we form an equation, when we
know the expression for its root ; that is to say, that an equation being given,

susceptible of taking 'different values, by reason of the multiple values of the

radicals which it contains, it is required to find an equation free from radicals

which has these values for roots. I will take, for example, the same expres-

sion (8).

To abridge, let us make

A
the problem reduces itself to eliminating y and z between the three equations

y-\-z=x, ^
n=a, zn=5.

But here the elimination can be conducted according to a very simpr ^ro-
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cess, analogous to that which has been employed for reciprocal equations. By
the rules of multiplication we have

But y-\-z=x and yz^i/ab; hence, making i/ab=c, thfi equation will

become

By means of this formula we express, in function of x and c, successively all

the quantities y--\-z*, yS-j-z
3
, &c. When we have arrived at y

a
-\-z, we re-

place y"-\-z
c
by a-\-b, and then we shall have the required equation, which

will be of the degree n in x.

This equation contains c ; but we have c== ^/ab= 3/A:--\-B-: hence, c is,

in general, susceptible of n different values. By putting in the equation each

of these n values in its turn, we shall have n equations, and, consequently,
n X , or n" values of z. This, in fact, ought to be the case, from what has

been said at the close of the preceding article. If we should wish to have a

single equation which has all these values for roots, it would be still necessary
to eliminate c between the equation of the degree n in a: and the equation

c*=ab.

But if in formula (8) we only wish to associate the radical values whose

product is real, it is this real value solely which we must choose for c, and we
shall only have a single equation of the degree n for determining all the values

ofz.

RESOLUTION OF THE EQUATION OF THE FOURTH DEGREE.

384. After having made the second term disappear, the general equation of

the 4 degree is

xi+pxS+qx+r^O .............. (1)

If we make z=a-|->-f-c, squaring, there results

or, transposing,

z3
(

raising anew to the square, we have

then, replacing a-\-b-\-c by z, and transposing, we obtain

This equation is without a second term, and by the manner in which it has

been formed, we know that it admits of the root x=a-\-b-{-c. Thus, we re-

solve equation (1) in determining a, 6, c, by the condition that it shall be iden-

tical with the preceding, which gives

These equalities show that, by taking a2
, i*, c3 for unknowns, these three

quantities are the roots of an equation of the 3 degree, the coefficients of

which are (see Art. 245)
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2

jp
2 4r

16

!L

'6-

Consequently, this equation of the 3 degree is

2i2c2= .

64

Such is the reduced equation upon which the solution of equation (1) depends.

Suppose that the three values of z have been determined, which designate

by z', 2", z'", we shall have

a= V 2 't &=db A/ 2"? c=i \/ 2/"'

If the signs be combined in all possible ways, there will result eight values

for a-\-b-\-c or x. But as the last term of the reduced equation (2) was

formed by squaring the equation abc= -q, it follows that the values contain
o

rtot only the roots of the proposed equation, but also those of an equation
which would differ from it in the sign of q.

At the same time it may be perceived that, to have only the roots of the

proposed, it is necessaiy to add only the values of a, i, c, for which abc= -o,
o

and the product of which has, consequently, the contrary sign to q. In each

particular case it will be easy to determine for the radicals three values, A, B,

C, which shall fulfill this condition ; and afterward, with these values, wo
form the four roots of the proposed, to wit,

z=+A+B+ C, z=+A B-C,
x= A+B C, x= A B+C.

Generally, instead of A, B, C, the three radicals are placed, and the values

of x are written thus :

.r=+ VV+ -v/ 2^ */*'"> *=+ /' V z"+ V z '"i

.Tr= \/ 2'-f- V z"-\~ Vz'"i x - V z
' V z

"
A/2 '"'

But it is necessary to understand that in applying these formulas to particu-

lar cases there must be taken for -\/ 2
' V z"i V 2 '" three determinations, the

product of which shall be of the same sign as q. This observation is im-

portant ; failing to have regard to it, we might find false roots.

385. The nature of the roots of the reduced equation will make known the

nature of the roots of the proposed. But the reduced having its last term

negative, has always one positive root (see Art. 248, Prop. VIII., Cor. 4), and

the product of the other two roots should be positive ; then, if these last are

not imaginary, they will be both positive or both negative. I pass over tho

case in which <7=0, because then the proposed would be solved by the rules for

the second degree. Consequently, there are three cases only to be examined.*

1. Case where the three roots of the reduced equation are positive. There

the four values of x are evidently real, and if the radicals -^2', ^/z", V z'" be

regarded as representing positive determinations, their product will bo positive ;

* This explains an operation in Art. 365.
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then the preceding formulas will be specially applicable to the case of <?>0.
For <7<CO it would be necessary to change the sign of one of the radicals.

2. Case where ttie reduced has one root z' positive, and two z", z'" negative.

The radical T/Z' will be real, but the radicals V2" and -\/z'" will be imagi-

nary ; consequently, the four values of x will be imaginary also, unless z"=z"'.

When ;"=2'",one of the two quantities -/~"+ V z
'" and V-" V~ "

WU> 1

become zero, and supposing it to be die latter, the values of x will be simply

JT= VV, *= V^, x=- V^+2 V~, x=- V?-2 J~^.

The first two are real, since z' is positive, and the other two are imagi-

nary, since z" is negative. Besides, as in the reduction, we have supposed

-\/z"= y/z'", we ought to have here -\/z' V 2
"
T/Z'"=Z" V 2 '; so that this

product can only have the sign of q by choosing for -\/z' a sign contrary to

that of q, since, by hypothesis, z" is negative.

3. Case in which the reduced has one root z' positive, and two roots z", z'"

imaginary. The positive root z' being known, we can divide the reduced by
x z', and we shall have an equation of the second degree, which will give for

z" and z'" imaginary values of the form

Consequently, two of the values of x will contain the sum

'

Jf+g S=i+,Jf-g S=i.
and the other two will contain the difference

V/+s\/-i-V/-gV-i.

THE DIOPHANTIXE ANALYSIS.

386. THIS branch of analysis derives its name from its inventor, Diophan-

tus, of Alexandria, in Egypt, who flourished about the year 360, A.D. It

relates chiefly to the finding of square and cube numbers.

The solutions of the questions must frequently be left, notwithstanding the

various rules that have been given for this purpose, to the talents and ingenui-

ty of the learner, who, in pursuing these inquiries, will soon perceive that

nothing less than the most refined algebra, applied with great skill and judg-

ment, can surmount the various difficulties which attend them ; and, in this

respect, no one, perhaps, has ever excelled Diophantus, or discovered a greater

knowledge of the extent and resources of the analytic art.

When we consider his work with attention, we are at a loss which to a 1-

mire most, his singular sagacity, and the peculiar artifices he employs in form-

ing such positions as the nature of the problems requires, or the more than

ordinary subtilty of his reasoning upon them.

Eveiy particular question puts us upon a new way of thinking, and fur-

nishes a fresh vein of analytical treasure, which can not but prove highly use-

fuLto the mind in conducting it through other difficulties of this kind when-

ever they occur, and also in enabling it to encounter more readily those that

may arise in subjects of a different nature.

The following directions for resolving questions in the Diophantine analysis
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will be found useful ; but no general rule can be given, and, therefore, the

student must often be left to depend solely upon his own ingenuity and skill.

Substitute for the root of the square or cube required, one or more letters,

such, that, when they are involved, either the given number or the highest

power of the unknown quantity may vanish from the equation ; and then, if

the unknown quantity be of the first degree, the problem will be solved by

reducing the equation. But if the unknown quantity be still a square or a

higher power, some other new letters must be assumed to denote the root,

with which proceed as before, and so on till the unknown quantity is but of the

first degree, and from this all the rest will be determined.

EXAMPLES.*

(1) To find two square numbers whose sum is a square.

Let x2 and y
2 be the two squares ; let 3z and 4z be the roots.

Then 25z2= Q f=w 5z|
3=w2 10z+25z2

;

ns

.-.z= ; if =10, z=l, then zX3=3 and zX 4=4?

and the two squares are 9 and 16, whose sum is 25, a square, if n=20, z=2 ;

and from this we get another value of x and y, and so on.

(2) To find two square numbers whose difference is a square.

Let x2 and y
2 be the two squares.

Assume x2
y'

2=(x m/)
s=:r2

2nxy-\-n
2
y
2

.

Then y
2=2nxy-{-n !2

y\
or 2nx=(n2

-{-l).y ;

Suppose ?/=2, then o:=?i2
-j-l. If n=2, 2/=4, and .r=5 ; also aj

y*

=25 16=9, a square number. If rc=3, y=G, and x=lO ; also .r
2

y
2

= 100 36=64, a square number.

(3) To change the sum of two squares into the sum of two others any num-

ber of ways at pleasure ; for example, in three different ways.
Let a2 and b'

2 be the given squares, and let a x and ex b be the roots of

the required squares ; then, by the question, we get

ax\*+'cx^b\*=a?+b*',

by involution, a2
2aa:-fz

2
-f c2a:2 2icar+i

2=a2+62
;

by transposing and dividing,

|-
c*x 2cb=0,

2bc+2a
or c2ar+x=26c-f2a and x=

a ,

where c may be taken at pleasure ; for example,

c=2, 3, and 4
;

46-f-2a
then, ar= , TT , and

10 17

* Many of these problems are selected from the Arithmetical Questions of Diophantus,

of whiA six out of thirteen books now remain. The best edition is that published at

Paris, by Bacliet, in the year 1070, with notes by Fermat.

t This sii,Ti D denotes that the number placed equal to it is a perfect square.
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(4) To divide a number which is the product of the sum of two squares by
the sum of two others, into two squares two different ways.
Let a?-}-b* be the sum of two squares, and <?-\-fC

2 the sum of two others,

whose product (a*+fe
2
)

. (c
2
-fc?

3
)
= (ac+ &d)

3
-f(6c adf=(ac W)3+ (6c

-{-ad)
J

, as required.

(5) To find a number, x, such,that x--I and a: 1 shall be squares.

Let or+l=a3
,

and x l= fe
2

.-. 2=as b1
by subtraction;

.-. 2xl= (a+6)(a 6),

3
or 3=2a, and a=-,

if

9
and a2=7 ;

4

9 5
=-, and z=-.

4 4

Or thus:

x l=y- 2= D =sy\-=s- -2

.. s- 2sy= 2

I

2sy=s
2
-|-2> and y=- 2s

'

9 5
take s=l .-. v=5 an<l x=y- I=T 1=-, as before.

4 4

(6) Required to find four square numbers whose sum shall be a D .

Let 1, 4, 9, and iz be the required squares ; then, by the question, we get

14+z2= D =n x\-=n2
2nx+x2

,

n2 14
and x= ,

5 5
where n may be any number at pleasure, if n=3, x= -, z2=, or if n =4,

6 36

1 11 225 "isl*
j=-, and the numbers are 1, 4, 9, and ; then 1J-4-I-9-4- =- =

4 lo 16 16 4
1

as required.

(7) Divide 2 into three rational squares.

Let x, 2x 1, and 3x 1 be the roots of the three squares respectively;

then ia_|_4x
3

4jr+l-f 9x- 6x-fl=2;

by transposing and dividing,538
x=j,

2r 1=-, 3z
1=^,

the roots;

and the D 's will be

,_25 ,9_ 64
X'~

49'
2X~ l|

49'
and 3X~ l|3

49'

25 9 64 98
the sum of which is

4^+^9+49=^9=2, the proof.

Or thus :

Let 1, x2, and y- be the squares ; then
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1-j-x
2
4.^= 2 and 3?+y*= l,

4
where n may be taken any number greater than 1 ; if n=2, then y ^ and

o

16 9
3/'

2 =:-z ; then will x2=
, and the sum of these plus 1 is evidently 2.

(8) Divide into three rational squares.

Let x, 2x -, and 3x -, be the roots of the rational squares, and their

squares are

1 1

-, -,

1 1 1
and a^+4z2

2a:+j+9x
2

3a:+-=-,

5 25
and x will be found to be , from which we get the three squares, viz., r-r,

14 lab

9 64 1
r -, , and their sum is evidently -, as required.196 196 * 2

(9) To divide a given square number, 100, into two such parts, that each

of them may be a square number.

Let X2 be one of the parts, then 100 z2
, the other part, will be a square

number.

Assume 100 x"~=(2x 10)
2=4a:2 40z+100.

.. x=8, and 2x 10= 6 ; hence 64 and 36 are the parts required.

The same problem may be resolved generally in the following manner :

Let a2 be the given square, x2= one of its parts, and a2 x* the other.

Assume a2 x*=(nx a)
2=n2

a:
2

2anx-\-a
y

;

Then x-=n*x"~ 2anx ;

2na an"2 a

and

are the two squares required ; in which expressions a and n may be any whole

numbers whatever, provided n be greater than unity.

(10) To find a number.z.such.that a:+128 and T+192 shall be both square

numbers.

Assume x+128=23 .. x=z? 128, which is one condition answered; then

22
128-f 192=z 2

-|-64= D =a2 .-.z2=as 64 ; then we have only to assume

such a value for a as will make a2 64 a square ; but it is plain that if a be

taken =10, then a2 64=36= D , and z2=36 ; but this would make the value

of x negative ; then, in order to find values for z that will make x positive, take

a 17, and then a*=289, and .-. a* 64=225= D z2=225 and .-. x=225

128=97, the value required.

(11) To divide a given number, 13, consisting of two known squares, 9 and

4, into two other square numbers.*

* In the solution given of the above problem, n and m may be taken equal to any num-
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Let nx 3 be the root of the first square sought, and mx 2 the root of

the other square.

Then nx 3\*+mx 2|
3=13,

or (n
s+ros

)
. i3=(4m+6) . x ;

3n*-|-4mn 3m*
whence rur 3=-=. ;

-= the root of the first square,s--*
6mn

and mx 2=- --= the root of the second.
ns

-j-m
3

3n3+4mn 3w2 17
If n=2 and m=l, we have- ;

-= = the root of one square,n3+ms o

6/nn 2 2
-j-2m

s 6
and- '--=-= the root of the other square.

n*-\-m* 5

(12) Let 14 be divided hito three rational squares. It is web known that

the least three squares in whole numbers are 1, 4, and 9, which will answer

the question ; but to give a general solution,

Let 1, 3z 2, 2z 3, be the roots of the required squares:
24

then l+ (3z 2)
s+(2x 3)

2=14, or z= ;

Jui

24 72
then x3:=, from which subtract 2 ;

J.O I J

/46\ 2 2116 24 48 f
then

^ y =^gg- ;
Y3~
x 2=

i3'
from wllicl1 subtract 3 ;

/9\ 3 81 2116 81^
(is) =169-'-

1 +l69+l69= 14 -

(13) To find two square numbers whose difference shall be equal to any

given D .iiber.

Let x be the root of the lesser square sought ; and let d, the given difference

of the squares, be resolved into any two unequal factors a and b, of which a is

the greater.

Let x-f- 6 be the root of the greattr square ;

then (*+&)* 3?=d=ab,
i. e., 2x-{-b=a.

ab
Whence z=~~o =: *^e root ^ t^ie 'esser D

m

a+b
and x-}-b=: = the root of the greater.

If d=60, and a X i=30 X 2, we have

302 30+2
-^-=14, and ^-=16;

whence 16* and 14* are the squares required whose difference =60.

bers whatever, provided their ratio be not that of 3 : 2. For if n were to m as 3 to 2, the

roots of the squares sought would be found the same as the roots of the known squares.

If it were required to divide a given square, a?, into two other squares,

Since (m*-f *}3=(m* *s)a+(2*)a,

,)
J

. , ,

where m and n may be assumed at pleasure, m being greater than n.
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(14) To find two numbers, such, that if either of them be added to the

square of the other, the sum shall be a square number.

Let x'2 -^-2xy and y be the required numbers ;

then x'2+2xy+y'
i= a =x-\-y\*-,

hence it only remains to make

i/4-2:n/+2?|
2 == D =z2

+ni/|
2=rl+2wz2

2/+n
il

2/
3
,

1-L4X3 2nx2

. 01 !
.y ~ n2 4Z8

3 19
If =2i, and ar=l, then y=r^ and x*-{-2xy , which are two numbers

1 > -lo

that will answer the conditions ; for

3> 19 256 16* 19

13| +13
=
169=131

Snd
13

Or thus :

3 400 20 2

13|
+ 13

=
169=13|

and
!3

1 1 /I \ 2

Put x and x for the numbers; then -
x-{-x*=(- xj , a square, and

-_J +x= -+x+x*=+-+x*=-+x\ = D , where a: may be taken

at pleasure, provided it be less than -.

(15) To find two numbers whose sum and difference shall be both square

numbers.

Let x and y be the two numbers ; then, by the question,

x-\-y= O =a2 and x y= D =62
;

add both squares, and we get
2*=a2+&2

; ^
hence x= -

.

Again, by subtraction,

<2y=a? 62 and y= ,

i
*

where a and b may be taken at pleasure, provided a be greater than & ; if

a=3 and 6= 1, then =5 and =4, whose sum and difference are

both squares. Or thus :

Let x and x9 x be the numbers.

It is evident that their sum is a square ; and, in order to satisfy the other

condition in the question,

Assume x n|
2=a;2

2x, the difference of the numbers ;

n2

whence

I
8_r J~

\

o o '

n2

_-.

2 ) 2n 2

n2
( na

)
* n*

Hence the two numbers are and < _ > --
r, in which n may

g
be taken at pleasure, provided it be greater than 1. If n=3, x=^,

and

45
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(16) Find two numbers whose sum is a square, the sum of their squares a

square, and either added to the square of the other a square.

Let x and x be the numbers ; then their sum - is a square, and i

I X 1 s

a square, and -+x-j-x
j= Q =T+ ;r

j

a square ; and,
Jlw 30 41

in order to satisfy the other condition, we assume

1 x 1

---+2x>=nx--

n 1 314 4
which, solved, gives z=

3 , if n=4, *=^ and - x==^ 3O that 5B

3
and are numbers that answer the conditions as follows :

mo

3_
s

f_?5 __5_
28l +281 ~~28

112 121 111*

28| ? 28 28T la?"" 28?~28

16 84 100 Tol3

"'
2l

(17) Find two such numbers, that if their product be added to the sum of

their squares, the sum shall be a square.

Let 2x be their sum and 2y be their difference ; then the greater will be

z-j-y and the less x y ; hence x3
2/
3= their product, and 2xJ

-{--2y-= the

sum of their squares; then, by the question, 3xi-\-y-= Q =nx y\* and

2nyx= -
; ifn=2 and y=2, . . x=8, which will answer the conditions.

71 "^~O

(18) To find two square numbers, such, that the difference of their cube

roots shall be a square number.

Let Xs and y
6 be the required numbers. Then x* y~ O ; consequently, x

and y may be any two numbers which are the hypotenuse and one leg of a

right-angled triangle, and the least numbers of this description are 5 and 3, and

the numbers themselves 15625=1253 and 729=273
.

(19) Find three numbers, such, that not only the sum of all three of them,

but also the sum of every two, shall be a Q .

Put 4x, x2
4x, and 2x-j-l for the three numbers ; then it only remains to

render 6x-f- 1= D
Assume its root n 1 ;

then 6x+l=n ll
3=n3 2n+l ;

n2 2n
whence x= -

,

o

if n=12, z=20, which will answer the conditions of the problem.

(20) Find two numbers, such, that the sum of their squares and the sum of

their cubes shall be both squares.

Let b be the base, p the perpendicular, and h the hypotenuse of a rational

right-angled triangle, x_any multiplier of b, p, and h ; then (6x)
2
-j-(px)

3=(Ax)3
,

but (6x)
3
+(px)

3= a rational square =iaxa ; hence (Zr+jp
3
).x=r

3
, or

r2

X=TT-: i; now if r=b3
4-p

3
, . . xrr&'-f-P

3
, and .. lz=b(b3--p3 ), x=pv

b3+p* ir-rrpT r*
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(&
3
+jp

3
); now let fc=3,j?=4; then is x=91, bx=273, and >.r=3G4. If

6=6 andp=8, then x=728, ftr=4368, and ^.r=5824, and so on in general.

(21) Find a number to which if 8 be added, the sum shall be a cube, and

from which if 1 be subtracted, the remainder shall be a cube.

Let x be the number; fc=2, c=l; then x-[-b
3= a cube and x c3= a

cube ;

c2 3c< c6

hence .r^

Sc4 c6

-^a"-+^.
Assume x c3=(a c)

3= a cube =a3 3a2
c+3ac

2 c3,
and .-. x=a3

$<z
2
c-}-3ac

2
; and, equating both values of or, we get

Sc4 c6

3cZ>3

whence I* - 7 R (* X\ VL/f j n
U C^ />J ,

X5 '

and, putting the right-hand member of this equation into numbers, we get

3X8 24

5256
hence ar

=343"-

(22) To find three square numbers,such, that the sum of every two of them

shall be a square number.

Let x2
, 7/

2
, and z2 be the numbers sought.

Then a:
2+22

2/
2+ z2

>
and x2

-j-i/
2 are the three numbers; i. e.,

x2
if x* y*

?+l,^+l, and -+y-

are three square numbers.

x m? 1 y n2 1
Assume -=

p.

-
, and -= -

,

z 2m z 2n

we have
"- m4

2??i
2 -l y

9 n4
4-2n

2+l
, and +1= ~

,

which are evidently two squares ;
and therefore it remains to make

square number.

Now
I)

2
(n

2
1)

3_"_ t m2 1 I 2 t n2 1 \
2_~

\ 2m )
~*~

( ~2n~ )

=
4m2

a square number.

Hence

(m3iy2.n2+(n8
l)*.m

2
, or (m+1)

2
. (m l)

J
.ra+(n+l)

i
. (n

a square number.

Let m-fl=n 1 .-. n=i-f 2.

Hence (m-f-1)
2

. (m I)
2

. (m+2) 2
-f.m- . (m J-.?)? x (' -|-

1 V,
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or (m l)'.(m+2)*-{-m
3
.(m+3)*,

or 2m4
4-87n

3+6/ 2 4/-f 4,

is a square number.

om-
Let the root of this quantity be assumed= -

i+'~.

/5m3 \ 3

Then I "+2J =2m4+8m3+6m3
4m-f 4 ;

whence m= 24, and n= 22.

x m2 1 575 y n3 1 483
Also, r=-^ = r^> and -= =-z~ 2m 48' z~ 2n

~
44'

575z 483:
hence z= , and T/= .

To obtain the answer in whole numbers, let 2=528 ;* then x= 6325, and

y= 5796. Hence 528, 5796, 6325 are the roots of the squares, and

528s , 57961
, 63252 are the squares required.

(23) To find three cube numbers, such, that if from every one of them a

given number 1, be subtracted, the sum of the remainders shall be a square.
Let 1-f-x, 2 x, and 2 represent the required roots.

Then, per question, (l+x)
3 l+(2 x)

3 1+ 8 1= D ;

Or (l_|_ ;r)3_^(0_ a
.)3_|_

8_3_. Q ;

^+3^+3x4-1+8 12Z+6Z3 r4-8 3= d ;

9Z8 9z+14= D , =(a 3x)
2=a2

14 9i=a3 6ax;
a3 14

and 6ax 9x=a2 14 .-. x= 6a9'
16-14 2 17 28

Suppose a=4; then x= =T?, and l-j-z= , and 2 z== ;

lo ID ID ID

4913 /28\ 3 21952

^375-' .

are the numbers.

(24) It is required to find three integral square numbers, such, that the dif-

ference of every two of them shall be a square number.

Let the roots of the required numbers be denoted by

s'-f-y*, s- y
3
, and r-fz

3
.

Assume r3 z2=s3+y3
;

then T- or
2 s2=^= D

and y*=i* Sr'r3 2r2s2+r*+2x%3 -
r.s;

but (rs+z
8
)
3

(s y
2
)
s= D

= (r
3+rs

)
3

(s
8 T

a
-t-z+s

2
)
3
=rr*4.2r

2z2+z* *+ 2r2s3

+2r3zJ
-j-2r

2ss r4 ^z3 **= Q
=4r2r-+4r

2
8
2 4s2z2 4s4= D

s 3 s3!8 4)= D ,

and (r
3 s2

)
za=as

a3 r2s3+s4 a

take r=21 and s=13,

* The least common multiple of the denominators, 48 and 44.

Go
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Take a =340,
then z2=256 and i/

2=r2 s
2

,r
2=441 256 169= 16,

.-. (r
2+x2

)
3=(441+ 256)

2
=(697)

2= one number,

and (r
2 x2

)
2=(s

2
+i/

2
)

z
=(441 256)

2
=(185)

2= the second number,
and (s

2
1/
2
)
2=(169 16)

2
=(153)

3
, which is the other number.

(25) To find three square numbers such, that their sum, being severally

added to their three roots, shall make square numbers.

Let 2z, 6z, and 9.r denote the three roots; .. by the question,

121z2+6.T=D,
121za+9:r= D.

Assume 3>=~ ; then 121x=y ; and .-. 121ar2=^-, and

Hence, we get

2s 1\
2 24

Assume y*+2y=-- ; and .-.
2/
3+2^+1= +1=-

22
-f-l 22+l 22 2^+1 (2 1)

S
,= -

.-. =?/
- 1=---= --

; hence, by substitution in the
/w.i /Z ^cZ ^.Z

second equation above, we have

(z I)
2

(2

But 4z2 is a square number ;

...
(z
_l)+l22X(z 1)

S=D

But (2 I)
2

is D,
.-. (z 1)

2+12*= D =22+10z+l= D

Again, by substitution in the third, we have

- n . n'

~
2z

X (z 1)
3= D , and .-. (z I)

2
. (z l)-fl8z . (z 1)

2= D

Hence
(z l)

2 x {(z l)
s+18z}= D,

and ... (2 l)
2+18z=D=z2+16z+ l;

hence (z
3+16z+ l) (z

2+10z+l)=6z=3zX2,

the - sum of which factors is
J"
= -j-1, the root of the greater D .
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9-3
.-. *3+16z= + 3*, and 4z3+642=92*+ 12*,

52
and .-. 4*+64=92+12, 5*=52, and z= ;

/52 Y /47

U-v IT

3 2209 2209

25 25

52~~~ 52
~

52
"~

104
2XT 2X

5-
2 'T -5-

2209 2209
__ __ _ _~ =

'
=_

520 121' 62920'

4418 13254 19881
,. we see that '

62920'
*

62920
"* * r OtS '

QUESTIONS FOR EXERCISE.

(1) Required six numbers whose sum and product shall be equal.

Ans. 1, 2, 3, 4, 5, and .

(2) Required five square numbers whose sum shall be a square.

Ans. 1, 4, 9, 16, and .

(3) Divide the number 3 into four rational squares.
16 1 9 49

AnS
-25'25'25'

and
25'

(4) Divide unity into three rational squares. 94 36
Ans'59'' and

49-

(5) Find two numbers whose sum is a cube, and difference a square.

Ans. 1512 and 216.

(6) Find two numbers whose product plus their sum or difference is each

a square.
5 5

12
4
12'

(7) To find two numbers, such, that when each is multiplied into the cube

of the other,the products will be squares.
Ans. 2 and 6.

(8) To find two square numbers whose difference is 40.

Ans. 49 and 9.

(9) To find two square numbers, such, that their sum added to their prod-

uct may be a square number.

Ans '

9
and

9'

(10) It is required to find two whole numbers, such, that their difference,

the d ifference of their squares, and the difference of their cubes shall be squares.

Ans. 10 and 6.

(11) Find two numbers, such, that the sum of their squares shall be both

a square and a cube.

Ans. 75 and 100.

(12) Find two numbers whose sum shall be a cube, but their product and

quotient squares.
Ans. 25 and 100.
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(13) It is required to find three integral square numbers that shall be in

arithmetical progression.
Ans. 1, 25, and 49.

(14) To find three square integral numbers in harmonica! progression.

Ans. 1225, 49, and 25.

(15) To find three numbers, such, that if to the square of each of them the

sum of the other two be added, the three sums shall be all squares.

8 16
Ans. 1, -, and .

o o

(16) It is required to find three whole numbers,such, that if to the square of

each of them the product of the other two be added, the sums shall be squares.

Ans. 9, 73, and 328.

(17) It is required to find three whole numbers in geometrical progression,

such, that the difference of every two of them shall be a square number.

Ans. 567, 1008, and 1792.

(18) It is required to find three integral square numbers, such, that the dif-

ference between every two of them and the third shall be a square number.

Ans. 1492
, 241

2
, and 2692

.

(19) To find three square numbers, such, that the sum of their squares

shall also be a square number.
144

Ans. 9, 16, and .

So

(20) To find three biquadrate numbers the sum of which shall be a square.

Ans. 124, 154
, and 204

.

For generalization of Diophantine problems in certain cases, see Bonny-
castle's Algebra. See, also, Theory of Numbers.

THEORY OF NUMBERS.

387. WE have already had occasion to demonstrate some propositions which

fall under this head, and which would have been reserved for this place had

they not been required for the elucidation of previous parts of the work.

We recur to one or two of these for the purpose of exhibiting some of the

other methods by which they may be established.

I. To prove that aX^=bxa. Suppose a>6 and c their difference
;

i. e., b taken b times and c taken b times, and

b X a=i(6+c)=Z>
2+ be ;

i. e., b taken b times and also c times.

We perceive that the product a X b will be the same as 6 X if the partial

product c x b is equal to b X c- But, by similar reasoning, the equality of cb

and be will be proved by the equality of two smaller products, cd and dc ; and

continuing thus, we arrive necessarily at the case where the two factors are

equal, or at the case where one of them is equal to unity. In the first case,

the equality is manifest ; in the second, it will follow, from the fact that h X 1

is h as well as 1 X^- Then the product aX& is always equal to the product
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II. To demonstrate tbat N X a X &=N X ab, I observe, first, that the prod-
uct ab is nothing else than a-\-a-\-a-\-, &c., the number of these terms being b.

ThenNxai=Na+Na+Na-f , &c., to b terms, =Naxb. Q. E. D.
III. Na6=N6a ; for Na=N-j-N+N4- ... to a terms ; then, to multiply

Na by b, it is necessary to take each of the terms b times,

thus Na6=N6-fNi+Ni . . . =Nfca. Q. E. D.

Corollary 1. If aD the factors of N be 1, then 1 X ab= l X ba, or ab=ba,

according to I.

Corollary 2. The above reasoning applies only to entire factors. The prin-

ciple is equally true, however, when some of the factors are fractions ; because,

if the entire factors, which are combined with the fractional ones, be written

in a fractional form by placing unity under them, all the factors to be multi-

plied together will be fractions ; the product of these, we know, is obtained by

taking the product of the numerators and denominators separately, which are

entire numbers, and therefore the order is immaterial, from what has been

proved above.

Corollary 3. If the factors be incommensurable, it is to be observed that

the product of two incommensurable quantities has no precise meaning.
But by regarding the incommensurables as limits to which approximating

commensurables tend, since the above reasoning applies to the latter, and their

order is immaterial, we may infer that the order is immaterial also in a prod-
uct of incommensurable factors.

Corollary 4. We have seen that, from the above proposition, it follows that

the order of factors in a product is immaterial ; hence it follows that if a

number, P, contains the factors a, b, c, &c., it is divisible by their product.

Corollary 5. If a number, P, is divisible by another, Q=a6c, then is P
divisible by each of the factors a, 6, e.

THE FORMS AND RELATIONS OF INTEGRAL NUMBERS, AND OF THEIR
SUMS, DIFFERENCES, AND PRODUCTS.

388. I. The sum or difference of any two even numbers is an even num-
ber. For, let A=2n and B=2n' be any two even numbers ; then

which, being of the form 2n, is an even number.

II. The sum or difference of two odd numbers is even, but the sum of three

odd numbers is odd.

Let A=2n-f 1, B=2n'-fl, and C=2/i"-fl, be three odd numbers; then

A-fB=2n+2n'+ 2=2n",
and A*|-B+C=2n+2n'+2"+3=2n"'-f 1;

the former having the form of an even, and the latter of an odd number.

In a similar way it may be shown,

(1) That the sum of any number of even numbers is even.

'2) That any even number of odd numbers is even, but that any odd num-
jer of odd numbers is an odd number.

(3) That the sum of an even and odd number is an odd number.

(4) That the product of any number of factors, one of which is even, wiD
be an even number, but the product of any number of odd numbers is odd ;

and hence, again,
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(5) Every power of an even number is even, and eveiy power of an odd

number is an odd number.

(6) Hence the sum and difference of any power and its root is an even

number.

For the power and root will be either both even or both odd, and the sum
or difference in either case is an even number.

III. If an odd number divide an even number, it will also divide the half

of it.

Let A=2ra, B=:2tt'-{-l be any even and odd number, such that B is a

divisor ofA ; let the division be made, and call the quotientp ; then we have

consequently (4), p is even, or of the form 2ra" ;

hence 2n=2n"(2n'-\-I),

that is, 7i=|A is divisible by B, if A itself be so.

DEFINITIONS.

389. (1) A perfect number is that which is equal to the sum of all its ali-

quot parts, or of all its divisors.

666
Thus, 6=--f-o+ Ri

and is> therefore, a perfect number.
* o D

(2) Amicable numbers are those pairs of numbers each of which is equal to

all the aliquot parts of the other. Thus, 284 and 220 are a pair of amicable

numbers, for it will be found that all the aliquot parts of 284 are equal to 220,

and all the aliquot parts of 220 are equal to 284.

(3) Figurate numbers are all those that fall under the general expression

n(n+l )(n+2)(n+ 3). . . .(n+m)

1.2.3.4....(ra-f 1)
'

and they are said to be of the 1, 2, 3, &c., order, according as mq=l,

2, 3, &c.

(4) Polygonal numbers are the sums of different and independent arith-

metical series, and are termed lineal or natural, triangular, quadrangular
or square, pentagonal, &c., according to the series from which they are

generated.

(5) Natural numbers are formed from a series of units ; thus :

Units, 1, 1, 1, 1, 1, &c.

Natural numbers, 1, 2, 3, 4, 5, &c.

(6) Triangular numbers are the successive sums of an arithmetical series,

beginning with unity, the common difference of which is 1 ; thus :

Arithmetical series, 1, 2, 3, 4, 5, &c.

Triangular numbers, 1, 3, 6, 10, 15, &c.

(7) Quadrangular or square numbers are the sums of an arithmetical se

ries, beginning with unity, and the common difference of which is 2 ; thus :

Arithmetical series, 1, 3, 5, 7, 9, 11, &c.

Quadrangular or)

square numbers, >
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(8) Pentagonal numbers are the sums of an arithmetical series, beginning

with unity, the common difference of which is 3 ; thus :

Arithmetical series, 1, 4, 7, 10, 13, 16, &c.

Pentagonal numbers, 1, 5, 12, 22, 35, 51, &c.

And, universally, the m gonal series of numbers is formed from the suc-

cessive sums of an arithmetical progression, beginning with unity, the com-

mon difference of which is m 2.

DIVISIBILITY OF NUMBERS.

390. I. The product of two numbers, a and b, is divisible by every number

which exactly divides one of the two factors a and b.

For let 6 be a number which divides b, so that b=c6, we have by the fore-

going ab=acX6- Then ab, divided by 6, gives the exact quotient ac.

Corollary. To divide a product of several factors, divide one of the factors

and multiply the quotient by the others.

On this subject we must observe that a number may sometimes divide a

product when it will not divide any factor. Thus, 20 divides neither 12 nor

15, but does their product, 180. This is because 20 is composed of factors

some of which are found in 12 and others in 15. But if the number 20 had

no common factor with one of the factors, it must divide the other. (See
Art. 84, note.)

II If there be n numbers, each of them divisible by k, then is their product
divisible by kn

.

For a=kq, b=kq', c=kq". . . .. abc . . .=k.w,
w being equal to q X q' X q" X

III. The sum of several numbers, a-j-b-{-c-j-d, is divisible by a number, k,

when the sum of the remainders obtained by dividing each by k is divisible by
this number.

For a=kq-\-r, b=kq'-\-r', c=kq"-\-r", &c.

... a+ b+c+d=k(q+q'+q"+ , &c.)+r+r'+ r"+, &c.

Whence it is evident that a-j-6-j-c, &c., is divisible by k when r-\-r'-^-r",

&c., is,

IV. The difference of two numbers, a and b, is divisible by a number, k,

when, if each be divided by k, the remainders are equal.

For a=kq--r, and b=kq'-{-r
.-. a-b=k(q-q').

V. Every number consisting of units, tens, hundreds, Sfc., is divisible by a

number, k, when the sum of the products of the number of units, tens, Sfc., by
the remainder, after dividing the units, tens, !fc.,

each by k, i* divisible by this

number.

For, representing by A, B, C, &c., the quotients, and by a, p, y, Sec., the

remainders of the units, tens, &c., by k, we have

10" =A.k+ a .: a . 10 =aA+aa
10n

-1 =BAr-r-/3 6 . IQ*-1= bBk+b3

10' =T)k+6 d . 10* =dDk+d6
101 =EA-+e e . 10 1 =eE+ee
10 = ... 1 /. 10 = /
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VI. The product, P, of several numbers, a, b, c, d, . . . is divisible by a

number, k, only when the product of the remainders, after dividing each of the

factors by k, is so divisible.

For, let a=kq-\-a, b=kq'-{-i3, c=kq"-\-y, &c.,

abc=kz-{-a(>.y, &c.

VII. The product, P, of severalfactors, a, b, c, d, . . . is divisible by a prime
number, k', only when one of the factors is divisible by this prime number.

For, let ak'q-{-a, b=k'q'-^-j3, c=k'q"-{-y, &c.,

.-. P=fc'z+a./3.)f. . .

Therefore, if k' divide P, it must divide a, 3, y ...

But k' is not found among the factors a, /3, y, . . . since, being remainders

to the divisor k', they are all less than it. Neither is lc' any combination of

them, since it is supposed to be a prime number. Hence a, /?, y, . . . and

therefore P is divisible by k' only when one of the remainders =0.

VIII. If the factors, a, b, c, . . . of a product, P, are prime to k, then is the

product not divisible by k.

For, if k be an absolute prime number, this follows from VII. Again, if

k be a multiple of a prime number, as p'v ; then, if P be divisible by k, we
ha've

P a.l.c ----
wi .. a . b . c . . . . =-

K p . v

therefore a . b . c . . . . must be divisible by p', which by VII. is impossible.

391. I. PROBLEM. To find all the divisors of any number whatever. The
first thought which presents itself is to try successively as divisors each of the

numbers 1, 2, 3, &c., to N. But this groping process may be abridged. Let
D be a divisor of N, and D' the quotient, we have DD'=N, or, under anoth-

er form, DD'= -/N X -vAN ! then, if DJs < i/N, D' will be > V^- Then,
after having found all the divisors <^ \/N, the quotients which shall have been

obtained in dividing N by these divisors will be the divisors > \/N.
For example, let N=360. The square root of 360 is comprised between

18 and 19 ; thus, we divide 360 only by the numbers 1, 2, 3 ... 18. In this

manner we find all the divisors of 360, to wit :

1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 18.

360, 180, 120, 90, 72, 60, 45, 40, 36, 30, 24, 20.

392. II. PROBLEM. To form a table of prime numbers. When the above

proceeding produces no divisor, the number is a prime number. To avoid

the long calculations necessary in these cases, tables have been constructed

which contain the prime numbers up to certain limits.*

The most simple manner of constructing it is to write in succession the

series of uneven numbers 3, 5, 7, &c., to such a limit as we seek, and to efface

all the multiples of 3, of 5, of 7, &c. It is evident that the prime numbers

are all that remain. At the head of these numbers it must not be forgotten to

place 1 and 2.

Nothing is easier than to know what multiples to efface. Those of 3 are

* The student is referred to the tables of Burckhardt, in which the prime numbers ex
tend to 3036000.
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found by counting the numbers 3, 5, 7, &c., in threes, setting out from 5;

those of 5 in counting them in fives, beginning with 7, and so on.*

393. REMARK I. The series of prime numbers is unlimited. For, suppose
it to be otherwise, and that n is the greatest : if we form the product

P=2.3.5 . . . n, which contains all the prime numbers, then P+ l, which

>n, must be divisible by some one of these numbers ; but this is impossible,

because there will always be the remainder 1. Then it is impossible that the

series of prime numbers should be limited.

II. In comparing all numbers with multiples of the same number, we are

led to present them under different forms, of which use is often made. For

example, if we compare them with multiples of 6, they may be represented

first, by one of the six formulas,

6z, 6-r+l, 6.T+2, 6z-j-3, 6.C+4, 6z+5,
iu whioh x is any whole number whatever.

But if we wish to consider only prime numbers, it is necessaiy to preserve

only the two formulas,

6x+l and 6x-f5 ;

because the others give numbers divisible by 2 or by 3.

We can also, in place of 6x-\-5, write 6(x-{-l) 1 or 6x 1, since x is any
entire number whatever. Thus all the prime numbers except 2 and 3, which

are divisors of 6, are comprised hi the formula

N=6zl.
The reasoning would be analogous for any other number than 6.

394. III. PROBLEM. To decompose a number into primefactors, and tofind

afterward all its divisors.

A number N, if it be not a prime number, can be represented by the product
of several prime numbers a, 5, c, &c., raised each to a certain power, so that

we can always suppose N=am6"cP . . . This is the decomposition which it is

required to effect.

Take, for example, the number 504. Divide it first by 2 as many times as

possible ; we find thus,

504=252 X 2=126 X 2 X 2=63 X 2 X 2 X 2.

Then divide 63 as many times as possible by 3, which is the smallest prime
number greater than 2 :

63=21X3=7X3X3.
Then we have

504=7X3X3X2X2X2,
or, rather, under another form,

504=23 X32 X7.

The divisions by 3 have led to the quotient 7. If the quotient had not been
a prime number, we should have continued the operations by trying success-

ively the other prime numbers, 5, 7, dec.

We can now readily form all the divisors of 504. They are, in fact, the

numbers which we obtain in taking all the prime factors one by one, two by

* Conceive a board pierced with holes in which the numbers 3, 5, 7, &c.7 are placed in

order. Then, as we arrive, in counting them by threes, fives, &c., at the multiples to be
effaced, suppose these multiples to fall tlirousrh the holes, there will remain only prime
numbers. Such was the famous sieve of Eratosthenes, of Alexandria, who lived 280 B>C.
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two, &c. That we may be sure not to omit any divisor, we adopt the fol-

lowing arrangement :

1,

504 2 2,

252 2 4,

126 2 8,

63 3 3, 6, 12, 24,

21 3 9, 18, 36, 72,

777, 14, 28, 56, 21, 42,

84, 168, 63, 126, 252, 504.

The first column on the left contains the given number and the quotient of

the successive divisions. By the side of these numbers, in a second column,

are written the prime numbers, which we employ as divisors, and which

are the prime factors of the number 504. Finally, we place at the right of

this column all the divisors of 504 ;-and I now proceed to state how we obtain

them.

At the top of the third column, but on the line above that which contains

504, we write unity, which may be regarded as the first divisor of 504. We
multiply this unity by the first number of the second column, and thus obtain

the divisor 2, which we write by the side of this first prime number. We
next multiply 1 and 2, the divisors already found, by the second number of the

second column, and, neglecting the product 1 X 2, or 2. which has already been

found, we obtain the new divisor 4, which is written on a line with the last

multiplier. We proceed in the same manner, multiplying the number of the

second column on the horizontal line which we are forming by each of the

numbers above it in the third column successively, until we multiply, finally,

by the last number of the second column, which gives a last series of divisors,

which series will always be terminated by the given number.

When we know the prime factors of a number, we can find its divisors by
another process. Suppose that a number N, when decomposed into prime

factors, gives

N=am6 ncP. . .;

the divisors of N will be represented by the formula am'6
n/cp

'
. . ., in which the

exponents m', n', p' . . . can not surpass m, n, p . . .

Hence we know that these divisors will be the different terms which we
obtain in effecting the product

395. REMARKS. The multiplication of the first two polynomes gives a

number of terms equal to (m-|- !)(+ 1) ; consequently, that of the first three

polynomes gives a number equal to (m-}-l)(n-^-l)(p-{-l), and so on; hence.

the number of all the divisors of N is expressed by the formula

We also see that P is the sum of all these divisors. But we know that the

an,+l_l
polynomes which compose P are respectively equal (Art. 23) to - r ,

fc>M_l
, _ , &c. ; hence, the sum of all the divisors of N can be expressed by the

formula
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I b"+l 1 cP-H 1

a 1 r 6 1
/s

c 1
'

For example, taking N=504=23 X3J X7, we shall have m=3, n=2,
p= l. Hence the number of divisors of 504 will be 4x3x2=24, and the

sum of all the divisors will be

2_1 33 1 72 1

^~i xim x TUT= 15 x 13 x 8= 156 -

396. IV. PROBLEM. How many times is a prime number, 0, factor in a

series of natural numbers, from 1 to n ? or, in other words, what is the highest

power of which divides the product 1 . 2 . 3 . . . n ?

Let n' be the entire part of the quotient of n by 0. In the proposed series

of natural numbers we find the n' factors, 0, 20, 30...., of the product
0.20.30. .. n'0; and it is clear that they are the only numbers of the series

which are divisible by 0. This product can be written thus :

Hence we shall obtain the required power of by multiplying 0"' by the high-
est power of 0, contained in the product 1 . 2 . 3 . . . n'.

The same reasoning may be repeated with reference to this product ;

hence, calling n" the entire part of tbe quotient of n' by 0, we readily perceive

that the highest power of contained in the last of the above products is com-

posed of the power 0" multiplied by the highest power of which is contain-

ed in the series 1,2.3 . . . n".

In like manner, calling n'" the entire part of the quotient of "
by 0, we are

led to seek the highest power of contained in the product 1.2.3 . . . n'".

We continue this process till we arrive at a quotient <^0. For the sake of

definiteness, suppose that n'" is this quotient ; then we conclude that the

highest power of contained in the given product 1 . 2 . 3 . . . n is 0a'-H"+"'.

For example, suppose we wish to know what U the highest power of 7

which divides the product 1.2.3 ... 1000.

We make n=1000, and taking only tht_ entire parts of the quotients, wo
shah* have

1000 Hr_ H2_
7

'

7
*

7

The sum of these quotients being 164, it follows that the required power is 7 161
.

397. Corollary. Let m, n, p, q be entire numbers, such that we have

m=n-\-p-}-q-\- . . .
; the expression

1.2.3.4.m
1.2 rc X 1 2 . . . .p X 1 2 qX, &c. "'

will always represent an entire number. To prove this, let be a prime factor

of the denominator : we shall have

TO n p q0=m+1+' &c -

Calling these entire quotients m', n', p
e

, q' . . . ., we shall have also

m'= or >n'-|^p'-j- <?'-)-, dec.

If we divide again by 0, and call the new entire quotients m", n" . . . ., we
shall, in like manner, have

m"= or >n"4-j?"+9"-j-, &c.

We continue this process as long as the quotients are not all less than 0.
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Then adding, we shall have

(m'+m"+ ...)= or >(n'+n"+ ...)+ (P'+p"+
But these different sums make known the highest powers of 6, by which we
can divide the products which compose expression (1) ; hence there is no

prime factor in the denominator which does not exist of a power at least equal
in the numerator of the fraction. This expression, therefore, represents an

entire number.

398. Perfect numbers are expressed or determined as follows :

Find 2" 1, a prime number, then will N=2n~ 1

(2
n

1) be a perfect number.

For, from what has been demonstrated in the preceding section, the sum of

2" l (2
n IV2 1

all the divisors of this formula will be represented by x 77^;
rr i- ;

because 2n 1 is a prime by hypothesis. But in this expression 1 is included

as a divisor, which must be excluded in the case of perfect numbers ; exclu-

sive of this, therefore, the formula will be

2n_l (on iy_l- V-_--_ On 2_ 1 fOn_ 1 \-
2-1 X

(2-l)-l
(2 1) X (2

n-l + 1) 2"-1

(2
n
-l)=

2(2" l)2
n+1 2"-1

(2
n

l)=2
n-1

(2
n

1)=N,
that is, the sum of all the aliquot parts of N, exclusive of-itself, or of 1 as a

divisor, is equal to N, and is, therefore, by the definition a perfect number.

The only perfect numbers known are the following eight :

6, 33550336,

28, 8589869056,

496, 137438691328,

8128, 2305843008139952128.

399. To find a pair of amicable numbers N and M, or such a pair that each

shall be respectively equal to all the divisors of the other.

Make N=ara&ncp , &c., and M=a'l

|8
>yr

S then, according to the definition and

from what has been demonstrated in the last section, we must have

_ _ C _
r-X . . X--r-=N+M,a 1 o 1 c 1

Find, therefore, such a power of 2, as 2r
, that

3 . 2 r
1, 6 . 2 r

1, and 18 . 2r 1

may be all prime numbers ; then will

N=2r+1
cZ and M=2r-Hfee

be the pair of amicable numbers sought.

The least three pair of amicable numbers are

284, 220,

17296, 18416,

9363583, 9437056.

400. We shall here introduce the student to the nomenclature and notation

of Gauss, given in his Disquisitiones Arithmeticse, which is now generally

adopted by writers upon the theory of numbers.
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CONGRUOUS NUMBERS IN GENERAL.

401. If a number a divide the difference of the numbers b and e, b and c are

said to be congruous with reference to a ; if not, incongruous. The quantity

a is called the modulus ; each of the numbers b and c a residue of the other in

the first case, a non-residue in the second.

The numbers may be either positive or negative, but entire. As to the

modulus, it ought evidently to be taken without regard to the sign.

Thus, 9 and -{-16 are congruous with reference to the modulus 5; 7

is a residue of 15 with reference to the modulus 11, and not a residue with

reference to the modulus 3.

Zero being divisible by all numbers, every number may be regarded as con-

gruous with itself with reference to any modulus whatever.

All the residues of a given number, a, with reference to a given number, m,
are comprised in the formula a -{-km, k being an entire indeterminate num-
ber. This is self-evident.

The cpngruence of two numbers is expressed by the sign =, joining to it

the modulus, when necessary, in a parenthesis, thus :*

16= 9(mod. 5), 7= 15(mod. 11).

402. THEOREM. Let there be m entire successive numbers, a, a-f-1, a-j-2,
. ..a+m 1, and another, A; one of the former will be congruous trith A,
with reference to the modulus m, and but one.

a A
For if is entire, a=A ; if it is fractional, let k be the nearest entirem

a A
number; above, if be positive; below, if it be negative; A-j-/b will

fall between a and a+m,f and will be the number sought; bat it is evident

a A. a+lA
that the quotients , , <xc., are comprised between k 1 andm m
-j-lit therefore one of them only can be entire.

403. It follows from this that every number will have a residue as well

in the series 0, 1, 2 . . . m 1, as in the series 0, 1, 2... (m 1).

They are called minima residues; and it is evident that, unless zero is the

residue, there will be two, the one positive and the other negative. If they

are unequal, the one will be <^ ; if they are equal, each of them = , with-
"* &

out regard to the sign ; from which it foDows, that any number whatever has

a residue which does not surpass the half of the modulus ; this is called the

absolute minimum residue.

For example : 13 relative to the modulus 5, has for a positive minimum res-

idue 2, which is at the same time its absolute minimum, and 3 for its nega-
tive minimum residue ; -f-5, with reference to the modulus 7, is itself its

* The analogy between equality and congruence led Legendre to employ the sign of

equality itself. This modification of it has been introduced by Gauss to avoid ambiguity.
a j^

t This may be seen from the equality =k n, where n<m.m

J This may be seen by observing that -= 1, and it is not till the nume-m mm
ratorof- increases to m that the quotient k increases to Jl-j-1.
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positive minimum residue; 2 is the negative minimum residue, and, at the

same time, the absolute minimum.
404. The following consequences follow from the above :

Numbers which are congruous with reference to a composite modulus are so

with reference to any of its divisors.

If several numbers are congruous with the same number with reference to the

same modulus, they will be congruous with each other with reference to this

modulus.

The same modulus must be supposed in what follows :

Congruous numbers have the same minima residues ; incongruous have

different.

405. If the numbers A, B, C, &c. ; a, 6, c, &c., are congruous each to each,

i. e., AEra, BEE. 6, &c, we shall have

A+B+ C . . .
= a+b+c . . .

If A E: a, B E: b, we have also A B EE a b.

406. If A E; a, we have also kA.= ka.

If k is positive, this is but a particular case of the preceding article, in

which AEEB EEC . . . and a=b~c . . .

If k is negative, k will be positive ; then kA.= ka .-. kA.= ka.

If A~ a, BEE b, then AB= a&; because ABEE ABEE A.b=ba.
407. If the numbers A, B, C . . . EE a, b, c . . ., each to each, then

ABC . . . =abc . . .

for, by the preceding article, ABEEafc; for the same reason, ABCEEaJc,
and so on.

By taking all the terms, A, B, C . . . equal, and a, b, c . . . also equal, if

A=a, A*=a*.

408. Let X be a function of the indeterminate x of the form
AZ"+Bxl'+Cxc

+, &c.,

A, B, C . . . being any entire numbers ichatever. If we give to x congruous
values with reference to a certain modulus, the resulting values for X will be

congruous also.

Let/ and g be congruous values of x ; by the preceding articles, f"=.g
a
,

and Af"=A.g
a

; in the same way we have B/^EEBg
6
, &c.

This theorem may be easily extended to functions of several indetermi-

nates.

409. If, then, we substitute in place of x all entire consecutive numbers,
and seek the minima residues of the values of X, they will form a series in

which, after an interval of m terms (m being the modulus), the same terms

will be again presented ; that is to say, this series will be formed of a period
of m terms repeated indefinitely.

Let there be, for example, X=rJ

8:r-f-6, and m=5; for x=Q, 1, 2, 3,

&c. ; the values of X give for positive minima residues 1, 4, 3, 4, 3, 1, 4, &c.,

or the five, 1, 4, 3, 4, 3, are repeated indefinitely ; and if we continue the

series in the contrary direction, that is, if we give to x negative values, the

same period will reappear in an inverse order; whence it follows that the

series contains no other terms than those which compose the period.

410. Then, in this example, X can not become EEO, nor EE2(mod. 5) ; and

still less =0 or =2 ; from which it follows that the equations .r
3

8:r-f6=0
and xz

8a:4-4= have not entire roots, and, consequently, not rational roots.

We see, in general, that when X is of the form*



CONGRUENCE OF NUMBERS. 479

X+Ai 1+ Bj--8+, &c., +N,
A. B, C . . . being entire quantities, and n entire and positive, the equation
X=0 (a form to which every algebraic equation may be reduced) will have no

rational root, if it happen that, for a certain modulus, the congruence X= be

not satisfied.

411. Many arithmetic theorems may be demonstrated by tlfe aid of the

foregoing principles, as, for instance, the rule for determining whether a num-
ber is divisible by 9, 11, or any other number.

With reference to the modulus 9, all the powers of 10 are congruous with

unity; then, if the number is of the form a-f 106-j-100c-|-1000rf-|-, &c., it

will have, with reference to the modulus 9, the same minimum residue as

a-j-i+c-j-* &c. It is clear from this, that if we add the figures of the number

without regarding their place value, the sum obtained and the proposed num-
ber will have the same minimum residue. If. then, this last is divisible by 9,

the sum of the figures will be also, and only in this case. It is the same with

the divisor 3.

Many of the properties of prime numbers, the divisibility of products already

given, &c., may be demonstrated by the aid of this system, but we shall not

repeat them.

412. The term congruence is analogous to equation, and the determination

of such values, for an indeterminate z, as to produce congruence in expression,

is called resolving them. There are congruences resolvable and irresolvable.

Congruences are also divided, like equations, into algebraic and transcend-

ental. Those which are algebraic are divided, again, into congruences of the

first, second, and higher degrees. There are congruences, also, containing
different unknown quantities, of the elimination of which Gauss treats.

413. The congruence ax-\-b==.c may be solved when its modulus m is

prime with a ; thus, let e be the positive minimum residue of c b. We find

necessarily a value of :r<On, such that the minimum residue of the product
ax, with reference to the modulus m, shall be e. Call r this value, and we
shall have

aw^~c b ;

then ar-f-6EEc(mod. m).

Here v is called the root of the congruence. It is evident that all the num-
bers congruous with r, with reference to the modulus of the congruence, will

also be roots (Art. 408). It is also evident that all the roots should be con-

gruous with v; in fact, if t be another root, we have av-\-b
=

at-}-b ; then

a^EEar ; and therefore r= f. We may therefore conclude that the congru-
ence zEEr(mod. m) gives the complete resolution of the congruence a.r-\-b=.c.

The foregoing exposition will serve to show how the algorithm of Gauss

connects itself with the indeterminate analysis, and we shall here quit the

subject.

414. No algebraical formula can contain prime numbers only.

Let p-\-qx-^-rx--{-si?, &c.,

represent any general algebraical formula. It is to be demonstrated that such

values may be given to x, that the formula in question shall not with that value

produce a prime number, whatever values are given to p, q, r, &c.

For suppose, in the first place, that by making ar=rn, the formula
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P />-j-<j7rt,-{-ri
2
-|-*i

3+< &c.,

is a prime number.

A.nd if now we assume x=m-\-<j>P, we have

P= P

&c. &c.
Or

p-\-qx-\-rx*-\-sx
3
=(p-\-qm-{-rm?-\-sm

3
-{-, &c.

sm?<!>)+P 2
(r0

2
-f 3sm<t?)+sfP 3

But this last quantity is divisible by P ; and, consequently, the equal quantity

p-^qx+rx^+sx
3
, &c.,

is also divisible by P, and can not, therefore, be a prime number.

Hence, then, it appears, that in any algebraical formula such a value may
be given to the indeterminate quantity as will render it divisible by some other

number
; and, therefore, no algebraical formula can be found that contains

prime numbers only.

But,although no algebraical formula can be found that contains prime num-
bers only, there are several remarkable ones that contain a great many ; thus,

r2
-|-.T-|-41, by making successively x=0, 1, 2, 3, 4, &c., will give a series

41, 43, 47, 53, 61, 71, &c., the first forty terms of which are prime numbers.

The above formula is mentioned by Euler in the Memoirs of Berlin (1772,

p. 36).

To the above we may add the following: xz
-\-x-\-l7 and 2.r3 -f-29 ; the

former has 17 of its first terms prime, and the latter 29.

Fermat asserted that the formula 2m -f-l was always a prime, while m was

taken any term in the series 1, 2, 4, 8, 16, &c. ; but Euler found that

232+ 1=641X6700417 was not a .prime.

415. If a and b be any two numbers prime to each other, and each of the

terms of the series

6, 26, 36, 46, &c.,.( 1)6

be divided by a, they will each leave a different remainder. For if any two

of these terms, when divided by a, leave the same remainder, let them be rep
resented by x6, yb ; then it is obvious that xb yb would be divisible by a, or

(x y)b would be divisible by a. But this is impossible, because a is prime to

6, and x y is less than a; therefore b(x y) is not divisible by a, but it

would be so divisible if the terms xb, yb left the same remainder ; these do

not, therefore, leave the same remainder; consequently, every term of the

series

6, 26, 36, &c., (a 1)6,

divided by a, will leave a different remainder.

DEDUCTIONS.

416. Since the remainders arising from the division of each term in the series

6, 26, 36, &c., (a 1)6

oy a are different from each other, and a 1 in number, and each of them
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necessarily less than a, it follows that these remainders include all numbers

from 1 to a 1.

417. Hence, again, it appears that some one of the above terms will leave

a remainder 1 ; and that, therefore, if b and a be any two numbers prime to

each other, a number x<^a may be found that will render bx 1 divisible by

a, or the equation bx aJ/= l is always possible if a and b are numbers prime
to each other.

And it is always impossible if a and b have any common measure, as is evi-

dent, because one side of the equation bx ay=l would be divisible by this

common measure, but the other side, 1, would not be so; therefore, in this

case the equation is impossible.

418. If a be any prime number, then will the formula

1.2.3.4.5, &c., (a 1)+ 1

be divisible by a ; for it is demonstrated in our preceding second deduction,

that if mud b be any two numbers prime to each other, another number x

may be found <^a, that renders the product bx l-H-*a, or, which is the

same thing, bx=ya-\-l ; and that there is only one such value of x<a, may
be shown as follows :

The foregoing equation gives, by transposition,

bx ay=l;
and, if it be possible, let also

bx' a^=l;
ind make x'-=x-^-m and y'=y in, where m is necessarily less than a, be-

tause both x and x" are so by the supposition.

Now, by this substitution, we have

cut bx ay=l;
therefore i bm= ::

p an, or bm-^-a; but this is impossible, since b is prime to

aud m<a, as in Art. 415. There can not, therefore, be two values of x less

foan a, that render the equation bx ay=l possible.

But, in the series of integers

1.2.3.4.5 ...... a 1.

every term is prime to a except the first, a being itself a prime ; if, therefore,

we write successively 6=2, o'=3, i"=4, &c., a corresponding term x, in

the same series, may be found for each distinct value of b, that renders the

product xbzc.ay-{-l, z'&'zaz/'+l, x"6"aray"+l, &c. ; and it Is evident that

no one of these values of x can be equal either to 1 or a 1 ; for, in the first

case, we should have 1 X b=ay-{-l, which is impossible, because b<^a ; and

the second would give (a l)b=ay-{-l, ora(b y)=b-\-l ; that is, 6-j-l-H-o,

which can only be when b=a 1, or when b=x, which case is excepted, be-

cause we suppose two different terms of the series. In fact, since (a I)
2

:jcoj/-|-l there can be no other term in the same series that is of this form ;

for if z2
rnay'-J-l, then (a I)

2 x* would be divisible by a, or (a 1+r)
X(a 1 ar)-H-a, which is impossible, since each of these factors is prime to

* To save the repetition of the words "
divisible by/' which frequently occur, the sign

-r is used to express them ; and, for the same reason, the symbol a: is introduced, to ex-

press the words " of the form of," which are also of frequent occurrence.

HH
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e, as is evident, because z<Ca, and a is a prime number. Hence our product
1.2. 3. 4. 5. ...(a 1)

becomes 1 . bx . b'x
1

. b"x" ---- a 1;

but each of these products, bx, b'x', b"x", &c., is, as we have seen, of the

form ay-j-1 ; therefore their continued product will have the same form, and

the whole product, including 1 and a 1, will be

to which if unity be added, the result will be evidently divisible by a ; that

is, the formula
1.2.3.4.5 ...... (a 1)+

is always divisible by a when a is a prime number.

DEDUCTIONS.

(1) The product
1.2.3.4.5 ...... (a 1)

is the same as

l(a_l)2(a-2)3(a-3), &c., (^)*';

and this product, as regards remainder, when divided by a, is the same as

the ambiguous sign being -j- when a 1 is even, and when a 1 is odd ; i. e.,

-}- when a is a prime of the form 4w-|- 1, and when a is a prime of the form

4ra 1
; also, this last product is the same as

therefore, from what is said above relating to the ambiguous sign, we shall have

!

when a 3: 471+1 ;
and

.2.3. 4

when a:n4ft 1.

Hence every prime of the form 4n-}- 1 is a divisor of the sum of two squares.

Again, the latter form may be resolved into the two factors

{(l.2.3.4

which product being divisible by a, it follows that a is a divisor of one or other

of these factors when it is a prime number of the form 4ra 1.

(2) From the first product, which we have shown to be divisible by a, viz.,

1.2.3.4, &c., (a 1)+ 1

=e, an integer,

we may derive a great many others, as

lz .25 .3.4, &c., (a 3)(a 1)+ 1

=e, an integer,

1s . 2s . 3s . 4. 5, &c., (a 4)(a 1)+ 1

=e, an integer,

and so on till we arrive at the same form as that in the first deduction.
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PRIMITIVE ROOTS.

419. THEOREM. If p, a number prime to a, divide the successive powers 1,

a, a9, a* ... there will be one at least, before arriving at of, which vnll leave

the remainder 1.

'The remainders being each less than p, there can be but p 1 different

ones, and, therefore, in the p first terms of the series 1, a, a3, a3 ... a*" 1
,

there are at least two which will give the same remainder. Representing
them by am, a

m/
, and their commou remainder by r, suppose
am=Ep+r, am'=-E'j?-j-r (1)

.-. am'am=(E'E)p, or am(a
ta'-m

1)=(E' E)j>;

and, as p is prime to a, it must divide am'~m 1. Therefore we have unity
for remainder in dividing by p the power am'~a>1 which is <^a

f
. Q. E. D.

420. Let an
designate the lowest power other than o, which gives the re-

mainder 1. All the preceding remainders are unequal. For, if for two

powers, a, am'
less than aa

, we could have the equalities (1), we might con-

clude, as just now, that am'~m would give the remainder 1. Consequently,

an would not be the lowest power to which this property belonged.

THEOREM OF FERMAT.

421. If \t be a prime number which will not divide a, the division q/"a
p~1

by

p irill give 1 for a remainder. In other tcords, a1*"1 1 it exactly divisible

by p.

It must be carefully observed that p is an absolute prime number, and not

simply prime to a.

CaH q, 5
/
, q", . . ., and r, r% r", . . . the quotients and remainders of the

p 1 quantities a, 2o, 3a . . . (p l)a, divided by p. If we multiply these

quantities, and suppose E to be an entire number, we have

a . 2a . 3a . . . . (p-l)a=(qp+r)(q'p+r')(q"p+r") . . .

=E+rrV' . . .

The first member is equal to

1.2.3 (p l)a^
and, as the remainders r, r1

, r" . . . are all different (Art. 415), the product
rrV . . . must evidently be that of the whole series of natural numbers, 1, 2,

3 ... (p 1), from 1 to (p 1). Hence the above equality becomes

1.2.3... .{p l)Xa!^1=E^+l .2.3. . . (p 1)

.-. 1.2.3... (p l)(av-
1

l)=Ep.
The 1 member of this equality is, therefore, divisible by p ; but since p is

a prime number, it can not divide any of the factors 1.2.3... (p 1) ; it

must, therefore, divide a*-1 1. Q. E. D.

Suppose that we take for p only prime numbers ; if we wish that the pow-
ers o, a1

. . . a*~l should give for remainders all the numbers inferior to p, it

is necessary to choose a, such that a?"1 should be the lowest power above a,
which gives the remainder 1 ; and if, among those which fulfill this condi-

tion, we take for a only numbers below p, we have those which Euler calls

primitive roots.

For the best method of calculating them, the student is referred to the

article by Mr. Ivory, in the fourth volume of Supplement to Encyclopedia

Britannica. We shall limit ourselves to setting down here the primitive roots

of numbers as far as 37.
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Numbers p.



FORMS OF SQUARE NUMBERS. 4-5

Now, of these six forms, the latter four have one of the squares divisible by

5, and, therefore, also by 25. And the first two are each impossible forms

for square numbers ; that is, neither of these two combinations can produce

squares ; therefore, if the sum of two squares be a square, one of the three

squares is divisible by 25.

(4) In a similar way, it may be shown that all square numbers compared by
modulus 10 are of one of the forms

lOn, 10n+5, 10n+l, 10n+6, 10re+4, or 10n+9.
Therefore, all square numbers terminate with one of the digits 0, 1, 4, 5, 6,

or 9 ;
and hence, again, no number terminating with 2, 3, 7, or 8 can be a

square number.

(5) By examining, in like manner, the forms of squares to modulus 100, we

may deduce the following properties :

(6) A square number can not terminate with an odd number of ciphers.

(7) If a square number terminate with a 4, the last figure but one must be

even.

(8) If a square number terminate with a 5, it must terminate with 25.

(9) If the last digit of a square be odd, the last digit but one must be even ;

and if it terminate with any even digit except 4, the last but one must be odd.

(10) A square number can not terminate with more than three equal digits,

unless they are O's ; nor can it terminate with three, unless they are 4's.

424. All square numbers are of the same form with regard to any modulus,

rt, as the squares
O3, I3, 2s, 3s, &c. (Aa)

3
, a being even ;

and as

O3, 1s, 2s, 3
s
, doc. \~ , a. being odd.

For every number may be represented by the formula areir, in which r

shall never exceed i<z.

Now (andhr)
2=a2

;i
3 dL2arn+r

3
,

where it is obvious that r2 and (an^r)
3 will leave the same remainder when

divided by a; therefore, (anir)
3 and r3 wiH be of the same form compared

by modulus a ; but r never exceeds a, therefore all numbers compared bv
modulus a are of the same forms as

O3
, 1*, 2s, S2

, &c., r9,

or, as the squares,
s
, 1s, 2*, 3, &c., (4a)

2
, when a is even,

and as

fa 1\ 3

s
, I3, 2s, 3

3
, &c.,

^ j
, when a is odd.

DEDUCTIONS.

(1) When a is even, the general formula

aan2 2anr-r-r
3

becomes 4a/3n3
i4a'nr-J-r

s

Therefore, all square numbers are ofthe same form to modulus 4a as the square^

O3 , 1s, 2*, 3*. &c., a3
;

and hence we see immediately that all square numbers to modulus 8 must be

of the same forms as the squares
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O2
,
I 2, 2

s

that is, they are all of the form

8n, 8n+l,
as we have already demonstrated.

(2) The following tables exhibit the possible and impossible forms of squaw
numbers for all moduli from 2 to 10.

Possible Formula.

2n,

6n,

7n, 7n+l,

9n, 9ra+l, 9+4,
, 10n4,

Impossible Formulae.

3n,

4n,

6n,

7ra, 7n+5,

CONTINUED FRACTIONS.

425. THE name continued fraction is given to an expression of the form

i. e., a fraction whose denominator is a whole number and a fraction, and

which latter fraction has also for its denominator a whole number plus a frac-

tion, and so on.

An expression whose numerators and denominators are any quantities what-

ever, may have the form of a continued fraction ; but continued fractions, of

which the numerators are 1 and the denominators whole positive numbers, are

the kind which most usually occur.

These expressions arise in various ways, and are of great use in finding the

approximate values of fractions and ratios that are expressed in large numbers,

as well as in the resolution of certain unlimited problems of the first and second

degrees ; in the latter of which the answer can not be easily obtained in whole

numbers by any other method.

Thus, in order to represent the irreducible fraction or ratio -
by a continued



CONTINUED FRACTIONS.

traction, let b be contained in a, p times with a remainder c ; also, let c be con-

tained in fc, q times with a remainder rf, and so on, according to the following

scheme :

_

d)c_(r

e) d(s

"7T&C-, .

and we shall have, by the principles of division,

a c b d c e

6=P+5. =+-. 3=14-3. *;
c d

p, 9, r, <xc., are called partial quotients, and P+TI 9+~~> &CM complete

quotients.

By taking the reciprocals of the second, third, <kc., of the above equations,

we have

c_l d_l
*"?+-, '

=
*"+^

&c -

c I 1

Whence, by extending the number of terms and generalizing the formula, we
shall have

a I a 1

l=r+-q+
l
- i

or
b=p+

l
-^

,
-, &c.,

according as the numerator is greater or less than the denominator ;
for in the

fatter case we should invert the first as well as the second, third, &c., equations.

To convert a given irreducible fraction into a continued one, we have the

following

RULE.

Divide the greater of the two terms of the fraction by the less, and the last

divisor continually by the last remainder, till nothing remains, as in finding their

greatest common measure ; then the successive quotients thus found will be

\Jie denominators of the several terms of the continued fraction, the numera-

tors of which are always 1.

EXAMPLES.

2431
(1) Reduce to a continued fraction.

1051) 2431 (2
2102

329) 1051 (3
987

64) 329 (5
320

~~9) 64 (7
63

T) 9 (9.
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2431 1

fi

(2) 1096 1

9119~8-fl

(3) 421_1
972~2+-

As the fraction -, in every case of this kind, is supposed to be irreducible, or in its low-
b

est terms, it is evident, by following the above process (which is similar to the method

Used for finding the common measure of true numbers), that we shall necessarily arrive at

a remainder equal to 1
;
or otherwise a and b would have a common divisor, which is con

trary to the hypothesis.

The continued fraction obtained will consist of a greater or less number of terms, accord-

a a
ing as the fraction - is more or less complicated ; but they will always terminate when T

u o

is rational.

426. A continued fraction may be converted into a series of vulgar fractions

by finding the successive sums of its several terms, after the manner of redu-

cing complex fractions to simple ones, in common arithmetic ; and the result

will be more or less accurate, according to the number of terms of the con-

tinued fraction employed.
Each of these results is called a convergent, and they are numbered in

order.

Thus, if it were required to reduce the following continued fraction,

a+T . 1
b-\ 1

c+j &c .,

to a series of common vulgar fractions, the operation will stand thus :

(a&4-l)c+a ,
1 1 cd+l

(3), a+T 1 =a+r ,
d =a

~

'-,
,

,
, ,

,
,

oc-j-1
'

b-\ 1 b-\
-- '

bcd-\-b-\-d
C + d

Cd+ l

abcd+a'b+ad+cJ+1 [(ab+l)c-\-a]d+db-}- 1

bcd+b+d (bc+l)d+b

(1), (2), (3), and (4) are called the first, second, third, and fourth convergents.

427. By inspecting the above convergents, wo perceive that each may be

formed from the preceding by the following

Add the product of the numerator of the convergent already found by the

denominator of the next term of the continued fraction, to the preceding
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numerator, for the uext numerator and follow the same process for the de-

nominator.*

EXAMPLE I.

denominators or quotients 3, 5, 2, 7, arranged in horizontal line ;

3 16 35 261

convergents p y. jp ~&2'

3 16
After having formed the convergents

- and , the rule apph'es. Then mul-
l o

tiply 16, the second numerator, by 2, the third quotient, and add 3, the pre-

ceding numerator, it gives 35 ; and multiplying 5, the second denominator, by

the same quotient 2, and adding 1, the preceding denominator, it gives 11 ;

and so on. This method may proceed from the commencement, if \ve write

- before the first convergence.

Thus, 3, 5, 2, 7,

1 3 16 35 261

T T 11 ~82~"

When the continued fraction is not terminated, the numerators and denom-

inators form two series increasing to infinity.

428. The convergents are alternately less and greater than the value of the

continued fraction ; for the first in the general form is equal to a, and as the

fractional part which is added is neglected, this is too small. The second

convergent is #+!> ana
"

smce & is t small by -, the fraction T is too great,

and, consequently, the whole convergent ; and so on.

EXAMPLE II.

It is shown in geometry that the ratio of the circumference of a circle to

31415926535
its diameter is

ooonoo'
w"'c"' ^7 being converted into a continued frac-

tion, and the successive convergents found, will be as follows :

3 22 333 355 103993

? ?"' 106' 113' 33102
' ;t

* The generality of this rule may be proved as follows :

N"N' N"
Let , , =r^ be three consecutive convergents, m the quotient, of die same rank aa

N" 1 1
the convergent , and - the partial fraction which follows ; and let N//;=N/

n-f-N and
\jf n ifi

N"
D"=iywi-j-D, according to the rule. The convergent which follows is formed by sub-

stituting m-\ for m in -=-r,. Making this substitution in its equivalent- , we have

D"'~rvf.._i >WT, fl>''+D)+I>'~I>"+iy

22
t The second, , was the ratio assigned by Archimedes ; the third, which is much

more accurate, that by Metios.
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and either of these will be the approximate value of the ratio, more and more

accurate as we advance.

429. The difference between two convergents is equal to 1 divided by the

product of the denominators of the two convergents. Thus, in the above ex-

ample, the difference between the first and second convergents is -, between

the second and third it is n ^ ...,, or -, between the third and fourth
7X106' 742' 11978

'

and as the true value of the continued fraction is somewhere between any
two consecutive convergents, we have its value to within less than the fraction

7' 742'
or

TTQ78'
^C '' accor<^m to t*16 convergent which we take.

To prove this in a general way, let

N
N_'
W

D' D~" D7'

be three consecutive convergents, and m the quotient, of the same rank as the

N"
convergent ^77 ; then N"=N'm-|-N; D"=D'TO-^-D.

N' N DN' D'N
But - =-- 1

N' N'm+N N' N'D'm+D'N N'D'm DN'
'D7=D'm+D~D'~ D'(D'm+D)

D'N DN' D'N DN'
r
= TVTVT- (2)

The numerators of (1) and (2) are the same, with contraiy signs; and, to

-find its value, we have only to go back to the first two convergents
- and

r , the difference of which is T.
b o

430. Since the denominators of the convergents increase to infinity if the

series continue sufficiently far, it is possible to take two consecutive convergents

whose difference shall be less than any assignable number ; wherefore, as two

consecutive convergents comprehend between them the value of the continued

fraction, it follows that a convergent can be found whose value shall differ from

that of the fraction by less than any assigned number.

For example, if the value of a continued fraction be required to within

, the convergents must be continued till the product of the denominators

of the last and last but one is at least 1000. The last convergent will then

have the degree of approximation required.

N
The convergents are fractions in the lowest terms ;

for if a convergent ^
admits of lower terms, some quantity q must be a common measure of N and

D. Whence (Art. 29) q must be a measure of the multiples N'D and ND',

and of (Art. 29) DN' ND', or 1, which is impossible.

431. Each convergent is a nearer approximation to the true value of the con-
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tinued fraction than that which precedes. For, let Tv/
_

^\7 f ')e a conver~

gent in which m is the last quotient employed ; then, if the complete quotient

TO+-+ &c., be denoted by y, and y be substituted for m in the expression

N"
of

yp,
it is evident (employing x to denote the value of the continued fraction)

that

N'y+N
-D'y+D'

N N'
Subtracting each of the convergents -pj ft,

from this value of x,

N'y+NN (DN'-ND')y j=y_
D'y+D D- D(D'y+D) ~D(D'y+D)'

N'y+N N' ND' D.
nd

D'y+D D'~~D'(D'y+D)~D'(D'y+D)'

Buty>l and D'>D .-. D'(D'y+D)>D(D'y+D) ;

' '

D(D'y+D)^D'(D'y+D)'
N' N

WTience =- is a nearer approximation to the value of a: than =r.

432. Among continued fractions those have been particularly distinguished in

which the denominators, after a certain number of changes, are continually

repeated in the same order, in which the continued fraction so formed is said

to be periodic, and may then always be considered as the root of a quadratic

equation or a surd.

To prove this, take a continued fraction entirely periodic.

x=- 1

P+- 1

p+f+, to.

Then, since the number of these fractions is unlimited, it follows that the

stun of all after the first is also x ; whence

1
!= .-. x-4-px=lp+x ^

in which case the above continued fraction serves to determine the vaiiie of

/^--f-4, since we have, by transposition,

and \fp in this last expression be put equal to 2, we shall have

2+, &c.

A continued fraction is also called periodic when the denominators occur

periodically in pairs, threes, fours, &c. ; thus,
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- 1 or- 1

P+ - 1 P+ -
1
^qJf- 1 H

JP+- r+-^q+, &c.
'

r.

Again, a fraction may be irregular in some of its first terms, and only become

periodic at a certain distance from its commencement.

In either of these cases, as above, the value of x, the sum of all the terms,

may be obtained by the resolution of an equation of the second degree. To
prove this in a general manner, let

a, 6, . . . . &c., be the quotients which form the non-periodic part,

p, q, . . . . &c., be the quotients which form the periodic part ;

then x=a-\--
6+.

'+- 1
'

P+
q+, &c.;

and. representing by y the value of the periodic part,

, &c.,

we have
x=a-\-j- &ndy=p-\--

': 1 ': 1

y y'

Consider these continued fractions as terminating with the partial fraction

-, and deduce the convergents ; we have (Art. 426) two equations of the fol-

lowing form :

py+p_-

The value of y, given by the first of these equations, is

P Qar
2/
=

Q'x_P"
which substituted in the second, gives, after reduction,

P-Q.r R'(P Qar)+ R(Q';r P')

which is an equation of the second degree in x.

By way of illustration, take the following fraction :

P P

9+ - .p , ~^+_i_ ;

q +-, &c. ?+) <

9

p 2a <

.. x a=
; or, resolving the equation, x= =

If we transpose or a, and substitute for x a its value (2), we have
2

or, making g=2a,
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=a+- p_^

2<z, &c.

A similar mode of solution may be applied to continued surds or expressions

of the form

the value of which, though apparently infinite, is always determinable by a cer-

tain equation, and in some cases in a real integral or fractional quantity ; for,

putting

we shall have, by squaring both numbers,

the latter part of which is evidently equal to the original surd ; whence

x*=a-\-x, or i8 x=a .. r=^db /l+a*
where, if <z=2, the expression becomes

f2+V2+ "/2+> &c., =2 or 1.

433. The process for developing any quantity, x, in a continued fraction,

consists in making successively x=a-\--;, x/=b-{', x"=.c-\-, &c., a be-

ing the greatest whole number contained in x, b the greatest whole number

contained in x1

, c the greatest whole number contained in x", &c.

The numbers a, 6, c, &c., being found, it is evident that if x', x", &e., are

replaced by their values, the required development is obtained, viz.,

""rf+, <fcc.

EXAMPLE.

Let it be required to convert Vl9 mto a continued fraction.

3 ^"'

t5y proceeding in this way we shall obtain the following :

r,
V 19+ 4

nj_
i

3

r
5 ' z11

V19+3
,

1

Multiplying both numerator and denominator by -\/19-}-4.
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Hence -/19=4+- 1

V/19+41_

- 1

2+-.^
xvn being the same as x1

, it is evident that, omitting the 4, the greatest in-

tegral part of Vl9 the quotients 2, 1, 3, 1, 2, 8, already found, will always
return again in the same order to infinity.

Should it be required to convert the square root of 19 into a series of con-

verging fractions without first reducing it to the continued form, they may be

obtained, after the method before employed, from the integral parts of the

above results only.

Quotients, 4, 2, 1, 3, 1, 2, 8, 2.

1 4 9 13 48 61 170 1421

6' 1' 2' T' II' II' "39"' "326"'

EXAMPLES.

251 1

(1) ^- ,
Ans. Quotients, -, 22, 1, 4, 2.

1 22 23 114 251
Convergents, -, -, -, ,

.

1769 1

(2 ) 5537'
Ans. Quotients, -, 7, 1, 2, 4, 5, 1, 2.

I L.
523 623 1769

argents, -, -, -, -, , , j^, .

(3) -/31. Ans. The quotients are 5, 1, 1, 3, 5, 3, &c.

5 6 11 39 206 657
And the convergents, -, -, , , , , &c.

(4) V~28- Ans. The quotients are 5, 3, 2, 3, 10, &c.

5 16 37 127 1307
And the convergents, y,

, , , -^-,
&c.

(5) -v/45- Ans. Quotients, 6, 1, 2, 2, 2, 1, 12, &c.

6 7 20 47 114 161 2046
Convergents,

j, j,
-, y, , , .

434. The converse of the proposition stated in Art. 432 is true, viz., that the

root of an equation of the second degree may be expressed in functions of the

coefficients of the equation by continued fractions.

The general form of the equation of the second degree may be written

a.3? bx c=0 ......... (1)

in which b and c may be essentially negative. This may be put under the

form
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c

Multiplying the fraction above and below by a, it becomes

ac . ae
az=&4- = O-|T- ,

ac^ax T 6 +_ nc

I/ ac
.: r=-lo4 j- ac

aV 6 +T_i_M
"*"T-U*"

6 +, &c.) Q. E. I).

If a=l, this becomes

Ifi==0,

.

0+, &c,,

which has no signification. But if we make

z*=(z-a)*,
a9 being the greatest square contained in c, we hare

z'rsz3 2oz+o=c;
.-. 2s 2az=c a;

or, putting c a*=y,

z 2a =,

y
But since z=z a, r=a-|- y

+~2

To apply this, let the equation be

+~, &c.

4
4

+4+, &c.,

x=2+- 1

The above result may be obtained in a more simple manner ; thus, put

x8=c=a-f/3 .-.Is aa=/3 .-. (x a)(x+a)=p
B 8

.-. x=a-\-- =o+^- 5
'

a-l-x ' 2a_J--
^2a+, &c.,

which shows that the square root of any number which is the sum of a

square, and of another number, is a continued fraction.
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Thus, if we have a*=7 .- a=2, /3=3,

V7=2+f ,3
^4+ , &c.

435. Continued fractions furnish a method of resolving in whole numbers

the indeterminate equation

ax-\-by=c (1)

In this equation <z, b, c are whole numbers, and the first two are supposed
to have no common factor. Let us conceive that we have developed the rela-

tion 7- into a continued fraction, and that we have calculated all the con-
o

vergents ;
the last will be equal to this relation

1

itself. Let us subtract from

a'
it the next to the last, which I represent by -p.

The numerator of the differ-

ence will be db' ba', and by the property of Art. 430 we have

ah' 6a'=l. . (2)

Multiplied by ic, this equality becomes

a X &'c+ b X ^p a'c=c ;

then equation (1) is satisfied by taking x= i&'e, y=^a'c.
This solution being known, we know (Art. 161) that all the others are given

by the formulas

.r=rt&'c bt, y=^a'c-\-al,

t designating any whole number whatever. We take the upper or lower sign

according as we have + or in the equality (2), or, what is the same thing,

o,

according as the convergent -, is of an even or uneven rank.

EXAMPLE.

Let there be the equation
261x 82y=117.

261
Ifwe reduce to a continued fraction, we find

oZ

Quotients, 3, 5, 2, 7.

3 16 35-261
Convergents, -, y, ,

.

If we take the numerator of the difference , and observe that
o*i 11 82

is a convergent of an even rank, we have

261X1182X35=+ !.

Then, multiplying by 117,

261 X 11 X 11782 X 35 X 117= 117.

The equation, then, is satisfied by making or=ll X 1 17= 1287 and ?/=35
X 117=4095 ; then, finally, the general values of x and y are

.r=1287+82, i/=4095+261.
If we divide 1287 by 82, and 4095 by 261, we find 1287=82 X 15+57 and

4095=261x15+180. Then, observing that t is any whole number what-

ever, we can write more simply
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436. The following theorem will be found useful in the resolution of inde-

terminate equations of the second degree.

Let jp
s

A5
2=iD be an indeterminate equation, in which

P
assert, that if this equation is resolvable, the fraction - will be found among

the fractions which converge toward V A.

From the above equation we derive p q VA=--=, and, therefore,

p <5 D Do
- VA, which I represent by =--=-; then J=

*O *Q

Let be the converging fraction which precedes -, and which is of such a
9o 9

nature that the sign of <J will be the same with that of D ; it will remain to

Do a _
be proved that we have-=< -

,orD(q-{-q )<^p-\-q V A.
?+?o

In the second member, instead of p, I put its value,

equality to be proved can then be written thus :

But this inequality is manifest, since we have VA>D, ^>^ , and since

the part (</ q ) -/A, which is at least equal to VA, by itself surpasses -,.

9

P
which is less than unity. , then, will always be found in the fractions which

converge toward VA, so that it will only be necessary to develop VA in a

continued fraction, and to calculate the converging fractions which result,, in

order to have all the solutions in entire numbers of the equation

D being

METHOD OP RESOLVING ENT RATIONAL NUMBERS INDETERMINATE
EQUATIONS OF THE SECOND DEGREE.

437. Let the proposed general equation be

O3^-\- bzy -{- cy*-\-dx-\- ey-\-f-=Q,

in which x and y are the indeterminates, and a, 6, c, d, c,ythe given entire

numbers, positive or negative. We first derive from this equation the fol-

lowing :

If we make, to abridge, the radical =, b* 4ac=A, bd 2ae=g,
4af=hj we shall have the two equations

If we multiply the last of these equations by A, and make, again, A.y-{-g

=r, g3 AA=B, we shall have the transformed equation

t? A?=B.

Reciprocally, if we can find values of v and t which satisfy the equation
Ii
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Vs A 2=B, we deduce from it the values of the indeterminates x and y in

the proposed equation, viz.,

v g tbyd
2/
=
~T~'

X ''

2<T~'

in which we should observe that both v and t may be taken with either sign,

as we may desire.

If we find the solution of the proposed equation in rational numbers, it will

suffice to resolve, by means of these numbers, the transformed v- Ai2=B
;

but if we wish to resolve the proposed in entire numbers, it will not only be

necessary that t and v be entire numbers, but that the values of t and v, sub-

stituted in those of .T and y, give for these indeterminates entire numbers. At

present we will only occupy ourselves with the resolution in rational numbers.

438. Every indeterminate equation of the second degree can be reduced,

as we have just seen, to the form w2 A^=B; but, whatever may be the

rational numbers t and v, we can suppose that they are reduced to a common

x y
denominator. Hence, making v=-, 2=-, we shall have to resolve the

Z Z

equation

.T
8

A7/
2=BZ2

,

in which now x, y, z are entire numbers.

We can suppose that these three numbers have not a same common divisor ;

for if they had had one, we could have made it disappear by division.

In the same manner, we can suppose that the numbers A and B have no

square divisors ; for if we had had, for example, A=A'&2
, B=B'Z2

, we might
have made ky=y', lz=z', and the equation to be resolved would have become

a:
2 Ay2=B'z'2

,

in which A' and B' have no longer a square factor.

The equation z
2

A?/
2=Bz2

being thus prepared, we shall observe that any
two of the indeterminates x, y, z can not have a common divisor ; for if #2

, for

example, should divide a:
2 and

2/
2
, it must necessarily divide also Bz2

; but it

can not divide z2
, since the three numbers x, y, z have no common divisors ;

neither can ffi divide B, since B has no square factor, x and y, therefore, are

prime with respect to each other ; for the same reason, x and z are primes
with respect to each other, as well as y and z.

I assert, moreover, that A and B can be supposed to be positive ;
for we

can only have, as regards the signs of the terms of one equation, the following

three suppositions :

T2 A^2=-fBz2
,

a:
2

A?/
2= Bz2

,

(I omit the supposition .T
2
-f-A<y

2= Bz2
, since it is evidently impossible.)

Of these three combinations the second coincides with the third by a simple

transposition ; but if we multiply the third by B, and make Bz=z', AB=A',
we shall have

z'2 Ay=B.r2
.

The equation to be resolved, therefore, can always be reduced to the form

x- B.y'=Az
2
,

in which A and B are positive numbers, and do not contain any square factor.
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439. The method which we shall proceed to follow for the resolution of

this equation is that given by Lagrange, in the Memoires de Berlin, 1767. It

consists in producing, by means of transformations, the successive diminution

of the coefficients A and B until one of them becomes equal to zero, in which

case the solution can be immediately deduced from known formulas.

The equation thus reduced is of the form x2 ^
2=Az2

, or x2 By2=z*,
but these two formulas do not differ, and it will suffice to give the solution of

the first, x-
z/
2=AzJ

. To do this, decompose A into two factors a, $ (which
will always be prime with regard to each other, since A has no square factor),

and suppose that z also is decomposed into two factors p, q, such that we
have A =a,3, z=pq, we shall have the equation (x-f-y)(x y)=a/3p

2
<?

3
, which

we can, in general, satisfy by taking x-\-y=ap
2

, x y=3qi
? this supposition

gives

arp+pq* ap* /Jo
3

x= :2
, y= , zpq;

hence the three indeterminates x, y, z will be expressed by means of two

arbitrary quantities p and q ; if it should happen that the values of x and y
contain the fraction i, x, y, z must each be multiplied by two.

Such is the general solution of the equation x3
?/
2=Az s

, a solution which

will comprise as many particular formulas as there are ways of decomposing
A into two factors.

For example, if A=30 ; there are four ways of decomposing 30 into two

factors, viz., 1.30, 2.15, 3.10, 5.6; hence will result these four solutions of the

equation x3 y*=30z
!
,

1. x= ^2+30o3
, y= pr 30o3, z=2pq,

2. x=2/?
2+15o2

, y=2p3 15o2
, z=2pq,

3. x=3p:
4-10o

2
, y3p* 10o2

, z=2pq,
4. x=5/>

2+ 6o3
, y=5fP 6o3

, z=2pq.
440. Let us proceed to the general equation x- By2=A:-; observe that

this equation, being the same with x2 A23=B?/3
, we can, without diminish-

ing the generality of the theorem, suppose that the coefficient of the second

member is the greater of the two. In case of equality, the reduction that we
shall indicate would always be employed.

Let, then, the proposed equation be Xs
B7/

2=A2Z
, in which we suppose,

at the same time, A^>B, A and B positive, and free from any square factor.

We have already proved that x and y are primes as regards each other ; y
and A, therefore, are equaDy prime to one another ; for if y" and A had a

common divisor 0, x- also must, necessarily, be divisible by 6, and x and y
would not then be primes to one another.

But since y and A are primes to one another, if we suppose that the

proposed equation is resolvable, and that we can, therefore, find determinate

values of x and y, x=M, y=N, we shall also be able to satisfy the equation
of the first degree,

M=nN y'A,

in which M, N, A will be given numbers prime to one another, and re, y' two

indeterminates.

Hence, in general, without knowing the particular solutions x=M, i/=N,
we can suppose x=ny A.y', n and y' being two indeterminates; and, sub-

stituting this value of x in the proposed equation, we shall have, after having
divided by A,
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2_B

But since i/ and A are prime to one another, this equation can not subsist

n2 B
unless r be an entire number. Let this entire number =A'&3

, &2
being

the greatest square which can be a divisor of it, we shall have

n3 B=AA'&2
,

and the equation to be resolved will become

A'&y 2nyy'-\-A.y'*=z'
i
.

We perceive that if there be any value whatsoever of n which renders n2B
divisible by A, this value can be augmented or diminished by any multiple of

A, without n2 B ceasing to be divisible by A ; hence, we can suppose that

its value is comprised between the limits and A, or even between the more
extended limits A and -(-^A.-

We conclude from this, that in trying successively for n all the entire num-
bers from ^A to -|-A.' we shall encounter, necessarily, one or more values

which will render n- B divisible by A, provided, however, the equation is

resolvable ; and in case these values will not render n2 B divisible by A, we
can conclude with certainty that the proposed equation is not resolvable.

441. Suppose, then, that we have found one or more values of n which

fulfill the required condition, it will be necessary with each of these values to

continue the calculation in the following manner :

Resume the equation A.'k3y* 2nyy'-\-A.y'
2=z'2

;
if we multiply it by A'&-,

and if we make, to abridge,

A'k^y ny'=x', &z=z',

the transformed will be

x'x' B?/y=A'z'z'.

This transformed could be resolved, if we could determine the solution of

the proposed equation, since the values of x', y', z' are easily deduced from

those of x, y, z ; reciprocally, the proposed will be resolved, if we find the solu-

tion of its transformed. For, from the known values of x', y', z', we cac

equally deduce those of x, y, z ; and it matters little whether these last value-

be under an entire or fractional form, since we have regard only to the resolu

tion in rational numbers, and since, after we have found any fractional values

of x, y, z, we can reduce them to a common denominator and suppress it.

n2 B
Since we can suppose the number n<|A, it is clear that . ,

8
or A' will

be <CJA, and, at the same time, positive ;
for n can not be < -/B, since

otherwise ifi B would be <B, and could not be divisible by A. The

proposed equation, therefore, will be reduced to an equation in every respect

similar, in which the coefficient A', which takes the place of A, is less than
1 A
?A.

442. If we have, again, A'>B, we can, in like manner, from the equation

r'2 Bi/'
3==A'z'2

, deduce a second transformed,

.r"2_B*/"
2=A"z"2

,

in which A" will be <CjA', and always positive. To obtain this second trans-

formed, there will be no new condition to be fulfilled, for having already found
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n- B=A 3
, if we make n=/*A'-|-', and if we take the indeterminate ft io

A. _

n'3 B
such a way that n'<iA', it is easy to see that T-; will be an entire positiveA
number less than |A' ; we have, consequently,

n'2 B=A'A"Jfc*,

A" being less than ]A', and not containing any square factor.

If it should happen that A", again, were greater than B, we should continue

this system of transformed equations, in which B is constant, until we arrive

at one of this form

in which C will be positive and <B.
443. But after we have passed into the second member of this equation the

term which has the greatest coefficient, which gives

we can proceed in a similar manner to the reduction of the coefficient B by a

second system of transformed equations

i"1 Cz' 2=B'y",

&c. &c.,

in which the coefficients B', B", &c., will be positive, and will diminish in at

least a quadruple ratio, and thus we shall soon arrive at a transformed

z3 Cz'=Dy8
,

in which the coefficient D wiD be less than C.

But the series of positive and decreasing numbers A, B, C, D will not go
on ad infinitum ; it will terminate necessarily at unity, and when we shall

have arrived at this term, the resolution of the last transformed, which is given

at once, will make known those of all the preceding equations, and, consequent-

ly, that of the proposed.

GAUSS'S METHOD OF SOLVING BINOMIAL EQUATIONS.

444. The solution of xn 1 = 0, it has been proved (Art. 299), can al-

ways be reduced to the case where n is prime ; and the case of n a prime

number, by a method invented by Gauss, may be made to depend upon the

solution of equations whose degrees do not exceed the greatest prime number
which is a divisor of n 1. The leading feature, of Gauss's method is to rep-
resent the imaginary roots by a series of powers of any one of them, whose
indices form a geometrical instead of an arithmetical progression. Thus, if m
be a number (and such, called primitive roots of n, can always be found) whose
several powers from 1 to n 1, when divided by n, leave different remainders,
and a be any imaginary root, then aD the roots may manifestly be represent-
ed by

a, a
3
,
a

3
,

a""1

;

or, since mn~ 1

=//n+l, where p is an integer, by a, am, a*, &c., a""""
3
.

445. The advantage of this mode of representing the roots is, (1) that they
can be distributed into periods, each of which, when continued, will produce
the roots of that period in the same order; and (2) that the product of any
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number of such periods will be equal to the sum of a certain number of periods,

the importance of which properties will be seen in the use made of them.

(1) Let n l=rs, r being a prime factor of n 1, and let mr=h ; then the

roots may be written in vertical columns, each consisting of r terms, as follows :

_ ,
. _ i,

am am L am h
^ _ t fl

m
^

and if any one of the periods formed by the horizontal rows be continued, tne

roots in that period will be produced in the same order ; thus, if the first

row were continued, the indices would be fe
9=m=mn~1

=/un-j-l, h*+1^m*'
= (pn-}-l)m

r

=/jtnk-\-h, &c., and the corresponding roots, a, ab , &c.

(2) Let any two of the above periods be represented by

a*+a
al '+ aal '

2

-f , &c., +a*
I '
8~ 1

ab-fa
bb+ abbi!

-f, &c., +abh
'~1

>

and let us multiply them together, using each term of the lower line in suc-

cession as a multiplier, and starting at that term of the upper line which stands

over it, and producing the upper line so as to supply the terms neglected at

the beginning, the result is

+b
_|_a

ah+b
-}-a

ah2+b + , &c., 4-o
ab8
~1+ b

a(a+b)U ^_ a
(ah+b)h

a(a+b)h
2

_j_ a
(ah-(-b}h

2

and therefore, collecting the vertical columns into periods, we get

S(a")S(a
b
)
= 2(a

a+b

) -f 2(a
ah+b

)+ S(a
al ''

2+b

)+ . . .+ S(a'
1 '
i~ 1+ 1

'),

or the product of two periods is equal to the sum of s periods ; and, conse-

quently, the product of any number of periods will be equal to the aggregate

of a certain number of periods.

EXAMPLE I.

x 1 1=0 ; 6=3.2, .-. r=3, s=2 ; also, 3, 32
, 3

3
, 3

4
, 3

5
, when divided by 7,

leave different remainders, viz., 3, 2, 6, 4, 5 ;
.-. m=3, and the roots are

and pi-\-p<2-\-p3= 1.

Also, p ljp2= a4
_}-a

2
-|-a

5+a3=p

and

Therefore the cubic which lias pi, p, p3 for its roots, is^+p- 2^1=0.
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F.XAMPLK II.

i17 1=0 ; 16=2.8 ; also, the powers of 3 from to 15, when divided by 17,

leave remainders

1 3 9 10 13 5 15 11 16 14 8 7 4 12 2 6,

thenp-\-q= 1, and

pq=:a*-{-a
l2
-\-a

l6
-\-a -J-a*4. a

11
-J-a

7
-{-a

3

a- -4-06 -J-a
8
-|-a

9
-J-a -J-o

14+a12
-|-a

u

7
_J_ a15_|_

a2_|_ a4_J_ a
5

_|_ aU_|_ a
!0

=p+q +p +p+p+q + 2 +q= 4;

therefore, ^? and q are roots of z--\-z 4=0.

Next, the periods p, q may be resolved respectively into the periods

r=a
U= o 1

<'-^.o
n
-f a

7 +06
r

and

therefore, r, s are roots of z 2
pz 1=

; and, similarly, t, u are roots of 2*

qz 1=0.

Lastly, the periods r, s, f, u may be resolved respectively into

then r1 4-r;=r,

r lr.2=a14+a l-+a4-a5=f,

.-. rl5 r2 are roots of z2
rz-\-t=Q;

and ri, the greatest root of this equation, =a+ "=- cos
77-

For further information upon the theory of numbers,the student is referred

to the Theorie des Nombres of Legendre, the Disquisitiones Arithmetics of

Gauss, of which there is an excellent French translation (Recherches AriOi-

metiques) by Poullet-Delisle ; to Barlow's Theory of Numbers ; to the article

of Ivory in the fourth volume of the supplement of the Encyc. Brilan. ; and

to the Memoirs by Libri, in tome v., 1338 (JEtrangcres), and by Cauchr, iu

tome xvii., 1840, of the Memoires of the French Academy of Sciences.
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Prof, ^cuklqj's larger treatise on Algebra.

1 VOL. SVO, SHEEP. PRICE Si 50.

EXTRACTS FROM CRITICAL NOTICES,

I deem it a work of great value to the mathematical student, and better suited to

the wants of private learners, and all others who wish to obtain a thorough knowl-

edge of the science, than any other work with which I am acquainted. ELIJAH A
SMITH, Corresponding Secretary of Queen's County Common School Association.

I am sure that it will be very acceptable to every student who desires to become

thoroughly acquainted with the higher departments of the science. Your labor,

therefore, is opportune, and deserves well of the republic of letters. Prof. A. CAS-

WELL, Brown University.

I have devoted some time to the examination of the work, and find it the most

complete treatise on Algebra that I have ever seen. My opinion of its merits is

such that I shall be most happy to recommend it to all who wish to gain a thorough
knowledge of the science. THOMAS SHERWIX, Boston English High School.

This is a work to delight the eye of a teacher it is so full and comprehensive,
at the same time that it is so simple, clear, and elementary. It contains many
things that are not to be found in any single English treatise, and every thing that

can serve to give a student a complete knowledge of modern analysis. Among the

subjects entirely new, or which, if found in other books, are here treated in a much
more ample and elegant manner are Interpolation, the Elements of the Calculus of

Probabilities, and some American improvements, never before published, in the
methods for the Solution of Cubic Equations. The article upon the theory and use
of logarithms is uncommonly full and clear ; while the important subject of the

Theory of Numbers, generally left out of school-books, is treated in a very elaborate
and detailed manner. Democratic Review.

particularly pleases me in it is its fullness and apparent completeness. It

meets a great want. It seems a store-house of algebraic knowledge ; the pupil who
uses it at school, and becomes interested, may pursue the study by himself, and
learn to enter into the spirit of Analysis. Prof. TILUXGHAST, Principal of the

Bndgewatcr, Massachusetts, Normal School.

The slightest examination is sufficient to convince any one at all acquainted with
the subject, that this is by far the best treatise upon Algebra that has yet appeared
in an English dress. It is elaborate and comprehensive, containing every thing to

be found in the latest German, French, and English works, with some things entire-

ly new, and, at the same time, it is exceedingly simple and elementary. The defini-

tions and rules are full and perspicuous ; illustration is piled upon illustration ; ex-

amples of every possible kind of notation are given, and explanatory notes abound.
It is thus eminently a book for beginners, while, at the same time, it contains every

thing that the more advanced student can desire in order to acquire a perfect knowl

edge of modem analysis. .Vcic York Courier and Enquirer.

Professor Hackley's book is the most complete work on Algebra that has ever

appeared in our country. In it will be found all that is contained in our best text-

books, treated with unusual clearness and fullness ; and in addition to this, many
ingenious methods, and much valuable matter, which have never before been offered

to'the American student, and which the author has collected from the wide field of
modern French, German, and English publications. He has not only given the the-

ory of Algebra, but has also fully introduced the student to the applications of the

theory. The examples in Equations, and the problems, are mostly to be found in

the books already in our schools, but in this treatise frequently improved in the

language and manner of solution. It is the happy combination of theoretical and

practical Algebra which will render this book so welcome to teachers and private
students, and so serviceable to the cause of thorough instruction. Prof. STEPHENS,

of the Western University of Pennsylvania (a resident for some years at several of the.

German Universities.)



2 Critical Notices ofHackley's Algebra.

I regard it as a very valuable accession to mathematical science. I find it re-

markably full and complete. E. S. SNELL, Professor of Mathematics, Amhcrst Col-

lege, Massachusetts.

I have examined your work, and am highly pleased with it. Your management
of the roots is admirable, as also of many other topics which I might mention. N.
T. CLARKE, Canandaigua, New York.

I have looked over it, and like the plan, the arrangement, the method, and sub-
stance ; they are all good, and the work is an admirable one for students. M. F.

MAURY, Astronomer of the National Observatory at Washington.

Your Algebra is the most complete work of the kind which has come under my
observation, and if the rising generation will study it, as I hope they will, they can
not fail to understand fully that interesting department of the mathematics. I trust

the demand will be equal to its merits
;
in which case, the benefits of the publica-

tion will be shared by both parties. Captain ANDREW TALCOTT, late Commissioner

of the Maine Boundary.

We can only say, therefore, that this Algebra is magnificent far beyond all that

we had seen before
;
and we have been a pretty diligent collector of those which

have appeared, either originally or by translation, in the Queen's English ;
and we

feel considerable satisfaction in presuming, at least, that in the work before us we
possess the completest treatise in the field of Algebraic Analysis that has been
written in any language. When, therefore, an American professor comes to us in

the garb of an author of a school-book, we pay to him, a priori, a greater deference
than any revised and corrected Englishman, or translated Frenchman or German.

Hackley's Algebra, we opine, will rank first among great works in the department
of analysis to which it belongs. For comprehensiveness of plan, propriety of ar-

rangement, ingenuity of symbolic exposition, precision and elegance of verbal

statement, variety and interest of practical exercise for the student and, in justice
to the publishers, let it be said, that in typographic execution it can not be excelled.

We deem it due alike to American enterprise and to science to give this book our
almost unqualified commendation

;
and trust that its success will be such, at least,

as to encourage its learned author to the publication of a treatise on Geometry,
which, on that condition, he promises shall soon be forthcoming. Southern Meth-
odist Quarterly Review.

For the preparation of such a work there is required a high and peculiar order of

talent
;
a thorough mathematical discipline ; a power of grasping the whole science

as a clear and distinct unity, into which all the parts flow harmoniously ;
a happy

tact in arranging and presenting the parts, so that the consecution shall strike the

learner luminously ;
a logical readiness in explaining abstruse points, so as to

awaken in the mind of the learner the process of ratiocination, as if it grew out of

his own thoughts ;
and a certain simplicity and colloquiality of style which can be

acquired only by long familiarity with teaching in the lecture-room. This desider-

atum Professor Hackley, in the work before us, has undertaken to supply. From
an examination of his Algebra we are led to believe, what we indeed anticipated
from the known character of his mind, the extent of his attainments, and the habits

of his life, that he has been eminently successful ; and has proved himself to pos-
sess that very order of talent which we have just described. The feature of Uio

book which first strikes us upon opening it, is its completeness. There is scarcely

any subject in Algebra which is not treated of with a fullness and clearness to af-

ford satisfaction even to a ripe scholar. The various subjects are arranged with

particular reference to convenience and clearness, and the analyses are happily ap-

plied to practical uses. We are decidedly of opinion, also, that a candid and thor-

ough examination of the work will bring before the mind so much to admire and

commend, that, as in our own case, there will be little disposition to mark faults,

which the author's own judgment and skill are adequate to correct in subsequent
editions. Methodist Quarterly Review.

Professor Hackley, in the work before us, has presented the American public with

the most complete Treatise on Algebra in the English language. The elementary
principles are treated in a simple and easy style, and from these the student is con-

ducted to the higher branches of the subject, in which all that is important is lucidly
detailed. Sillimari's Journal.
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Sheep extra. 91 25.

GREEK READER. Principally from the German of Jacobs. 12mo, Sheep. 9100.

THE ANABASIS OF XENOPHON. With English Notes, etc. 12mo, Sheep extra. 91 35.

THE GERMANIA AND AGRICOLA OF TACITUS. With English Notes, etc. 12mo,

Sheep extra. 75 cents.

CICERO DE SENECTUTE, DE AMICITIA, PARADOXA, AND SOMNIUM
SCIPIOMS, &c. With English Notes, &c. 12mo, Sheep extra. 75 cents.

XENOPHON'S MEMORABILIA OF SOCRATES. From the text of Kuhner. With
explanatory Notes, &c. 12mo, Sheep extra. 91 00.

RIDDLE AND ARNOLD'S ENGLISH-LATIN LEXICON. Revised by Dr. AUTHOK.
8ro, Sheep extra. 93 00.



S Harper's School and College Text-Books.

Professor oomis's ittatljematical Series.

THE RECENT PROGRESS OF ASTRONOMY
; especially in the United States. 12m,

Muslin.

A TREATISE ON ALGEBRA. 8vo, Sheep. $100.

ELEMENTS OF GEOMETRY AND CONIC SECTIONS. 8vo, Sheep. $100.

ELEMENTS OF PLANE AN D SPH ERIC AL TRIGONOMETRY, with their Appli-
cations to Mensuration, Surveying, and Navigation. 8vo, Sheep. $1 00.

TABLES OF LOGARITHMS OF NUMBERS, and of Sines and Tangents for every ten

Seconds of the Quadrant. 8vo, Sheep. $1 00.

TRIGONOMETRY and TABLES, bound together, may be had for $1 50.

Professor JJTClintock's School Classics.
FIRST BOOK IN LATIN. Containing Grammar, Exercises, and Vocabularies. 12mo, Sheep.
75 cents.

A SECOND BOOK IN LATIN. Containing a complete Latin Syntax, with copious Exer-
cises for Imitation and Repetition, &c. 12mo. [In press.]

AN INTRODUCTION TO LATIN STYLE. Principally from the German of Grysar.
12mo. [In press.]

A FIRST BOOK IN GREEK. Containing full Vocabularies, Lessons on the Forms of Words,
&c. 12mo, Sheep. 75 cents.

A SECOND BOOK IN GREEK. Containing the Syntax and Prosody, with Reading Les-

sons, and forming a sufficient Greek Reader. 12mo, Sheep. 75 cents.

professor ^acklejfs ittatljematical Series.

A TREATISE ON ALGEBRA. Containing the latest Improvements. 8vo, Sheep. $150.

A SCHOOL ALGEBRA. Containing the latest Improvements. Svo, Muslin. 75 cents.

AN ELEMENTARY COURSE OF GEOM ETRY, for the Ust of Schools and Colleges.

12mo, Sheep. 75 cents.

Professor Barker's Qcnglisl) Qcljool Series.

AIDS TO ENGLISH COMPOSITION. Prepared fur the Student of all Grades. 12mo,
Sheep, 90 cents

; Muslin, 80 cents.

GEOGRAPHICAL QUESTIONS. Adapted for the Use of Morse's or most other Maps.
12mo, Muslin. 25 cents.

OUTLINES OF GENERAL HISTORY, in the Form of Question and Answer. 12mo,

Sheep. $1 00.

Professor &ennrick
1

s philosophical tUorks.

FIRST PRINCIPLES OF CHEMISTRY. With Questions. Engravings. I8mo, half

Sheep. 75 cents.

THE SCIENCE OF MECHANICS APPLIED TO PRACTICAL PURPOSES.
Engravings. I8mo, half Roan. 75 cents.

FIRST PRINCIPLES OF NATURAL PHILOSOPHY. With Questions. Engravings.
18mo, half Roan. 75 cents.

Professor JJ-ogb's &cabemical iJOorks.

ECLECTIC MORAL PHILOSOPHY. Prepared for Literary Institutions and General
Use. I2mo, Sheep, 87.^ cents; Muslin, 75 cents.

ELEMENTS OF RHETORIC AND LITERARY CRITICISM. ISino, half Bound.
50 cents.

Dr. Qlbercrombie's philosophical {Dorks.
TREATISE ON THE INTELLECTUAL POWERS. With Questions. ISmo, half

Roan. 50 cents ; Muslin, 45 cents.

PHILOSOPHY OF THE MORAL FEELINGS. With Questions. I8mo, half Roan, 50

cents ; Muslin, 45 cents.



Harper's School and College Text-Books. *

Professor Draper's Philosophical toorks.

A TEXT-BOOK OF CHEMISTRY. With nearly 300 Illustration*. 12mo, Sheep. 75 < u
A TEXT-BOOK OF NATURAL PHILOSOPHY. With nearly 400 Illustrations, l&io.

Sheep. 75 cents.

CHEMICAL ORGANIZATION OF PLANTS. Engravings. 4to. S2 50.

professor Upfyam's Philosophical Series.

ELEMENTS OF MENTAL PHILOSOPHY. 2 vols. 12mo. Sheep. $850.

As ABRIDGMENT of the Above, by the Author. 12mo, Sheep. $1 25.

PHILOSOPHICAL AND PR ACTICAL TREATISE ON TH E WILL. 12mo, Sheep
extra. $1 25.

OUTLINES OF IMPERFECT AND DISORDERED MENTAL ACTION. 18mo.
Muslin. 45 cents.

Dictionaries anb iXJorks of tteference.
A DICTIONARY OF THE ENGLISH LANGUAGE. By NOAH WEBSTER, LL.D.
A new Edition, revised and enlarged, by C. A. GOODRICH, Professor in Yale College. 8vo,

Sheep. $350.
LIDDELL AND SCOTT'S NEW GREEK AND ENGLISH LEXICON. Basedon
the German Work of PASSOW. With Additions, <kc., by H. DBISLEB, tinder the Supervision of
Prof. AXTHOX. Royal 8vo, Sheep extra. $5 00.

Ax ABRIDGMENT of the Above, by the Authors, for the Use of Schools, with the Addition of a Sec-
ond Part, viz., English and Greek. [In press-]

RIDDLE AND ARNOLD'S ENGLISH- LATIN LEXICON. Founded on the German-
Latin Dictionary of Dr. C. E. GEORGES. First American Edition, carefully revised, and contain-

ing a Dictionary of Proper Names, by CHABLES ANTHON, LL.D. Royal Svo, Sheep extra. $3 00.

A UNIVERSAL GAZETTEER, Geographical, Statistical, and Historical. ByJ.R.M'CoL-
LOCH. Edited by D. HASKEL, A.M. 2 vols. Svo, Sheep, $6 50; Muslin, $6 00.

ENCYCLOPEDIA OF SCIENCE, LITERATURE, AND ART. Edited by W. T.
BRANDE. assisted by J. CAUVIJJ. Engravings. Svo, Sheep. 4 00.

THE NORTH AMERICAN ATLAS.
"

Containing 36 Folio Maps in Colors, forming a com-

plete Atlas of this Continent. By S. E. MORSE. Half Roan. $2 75.

ENGLISH SYNONYMS EXPLAINED. With copious Illustrations and Explanations. By
G. CRABBE, M.A. Svo, Sheep extra. $200.

A CLASSICAL DICTIONARY. Containing an Account of the principal Proper Names
mentioned in Ancient Authors. By C. ANTHON. 8vn. Sheep. $4 00.

DICTIONARY OF GREEK AND ROMAN ANTIQUITIES. Edited by W. SMITH.
Enlarged, &c., by C. ANTHOX. Engravings. Svo, Sheep. $4 00.

Ax ABRIDGMENT of the Above, by the Authors. I2mo, half Sheep. 90 cents.

THE ENGLISHMAN'S GREEK CONCORDANCE OF THE NEW TESTA-
MENT. Svo, Sheep extra, $5 00 ; Muslin, 4 50.

POTTER'S HAND-BOOK FOR READERS AND STUDENTS. ISino, Muslin.
45 cents.

Miscellaneous tDorks.
ROBINSON'S GREEK-ENGLISH LEXICON OF THE NEW TESTAMENT.
Svo, Sheep. $4 75.

BUTTMANN'S GREEK GRAMMAR. Edited by Dr. ROBINSOX. Svo, Sheep.

GRAY'S ELEMENTS OF NATURAL PHILOSOPHY. 12mo, Sheep. 75 cents

FOWLERS TREATISE ON THE ENGLISH L A N G U A G E
,
in its Elements and Form*.

Including a full Grammar. Svo, Sheep.
SMITH'S ELEMENTARY TREATISE ON MECHANICS. Svo, Sheep extra, $1 75 ;

Muslin, $1 50.

WHATELY'S ELEMENTS OF LOGIC. ISmo, Muslin. 38 cents.

WHATELY'S ELEMENTS OF RHETORIC. Complete. ISmo, Muslin. 38 cents

HOBART'S ANALYSIS OF BUTLER'S ANALOGY OF RELIGION. Also,CAU-
FORD'S Questions for Examination. Revised and adapted to the Use of Schools. By C. E. WEST.
ISmo, Muslin. 40 cents.

MARKHAM'S HISTORY OF FRANCE, from the Conquest of Gaul by Julius Casar to the

Reign of Louis Philippe. Prepared for the Use of Schools, by J.ABBOTT. 12mo, halfSheep. $125.



4 Harper's School and College Text- Books.

SCHMITZ'S HISTORY OF ROME. With Questions by J. ROBSON. 12mo, Muslin. 75cts.
THE NEW TESTAMENT IN GREEK, with English Notes, Critical, Philological, and

Exegetical Indexes, &c., by Rev. J. A. SPENCER. 12mo, Sheep, $1 40
; Muslin, $1 25.

MILL S LOGIC, RATIOCINATIVE AND INDUCTIVE. 8vo, Muslm. $200.
THE BOTANY OF THE UNITED STATES, North of Virginia. With a Sketch of the
Rudiments of Botany, and a Glossary of Terms. By LEWIS C. BECK. 12mo, Muslin. $185.

THE JUVENILE SPEAKER. Comprising Exercises in Declamation. By F. T. RUSSELL.
12mo, half Bound, 70 cents ; Muslin, 60 cents.

HARPER'S NEW YORK CLASS-BOOK. A Reading book for Schools. By W. RUS-
SELL. 12mo, half Sheep. $1 25.

MORSE'S NEW PICTORIAL SCHOOL GEOGRAPHY. 150 Engravings, and about
50 Maps in Colors. 4to. 50 cents.

A FIRST BOOK IN SPANISH. Adapted to every Class of Learners. By J. SALKELD.
12mo, Sheep, $1 25

; Muslin, $1 00.

A COMPENDIUM OF ROMAN AND GRECIAN ANTIQUITI ES, includinga Sketch
of Ancient Mythology, Maps, <fec. By J. SALKELD. 12mo, Muslin. 37J cents.

THE NORTH AMERICAN ACCOUNTANT. By P. DUFF. Royal 8vo, half Bound.
75 cents.

E L E M E N TS OF ALGEBRA, embracing also the Theory and Application of Logarithms, &c.
By D. W. CLARK. 8vo, Sheep. $1 00.

POLITICAL ECONOMY. With a Summary for the Use of Students. By A. POTTER
j-ni.i. half Roan, 50 cents; Muslin, 45 cents.

BURKE'S ESSAY ON TH E SU B LIM E AN D BEAUTIFUL. Edited by A. MILLS.
12mo, Muslin. 75 cents.

ALISON ON THE NATURE AND PRINCIPLES OF TASTE. Edited by- A. MILLS.
12mo, Muslin. 75 cents.

ELEMENTS OF MORALITY, INCLUDING POLITY. By W. WHEWELL. 2 vols.

12mo, Muslin. $1 00.

A SYSTEM OF INTELLECTUAL PHILOSOPHY. By A. MAHAN. 12mo, Muslin.
90 cents.

THE PHILOSOPHY OF RHETORIC. By G. CAMPBELL. 12mo, Muslin. 125.

LETTERS ON ASTRONOMY. Addressed to a Lady. By D. OLMSTED. With numerous

Engravings. 12mo, Muslin. 75 cents.

BOURCHARLAT'S ELEM ENTAR Y TR EATISE ON MECHANICS. Translated

and edited by E. H. COUBTENAY. Plates. 8vo, Sheep. $225.

PLATO AGAINST THE ATHEISTS ; or, the Tenth Book of the Dialogue on Laws, &c.

By TAYLER LEWIS. 12mo, Muslin. $1 50.

THE CAPTIVES. A Comedy of PLAUTUS. With English Notes, for the Use of Students, by
J. PROUDFIT. 18mo, Paper. 37 cents.

EPITOME OF THE HISTORY OF PHILOSOPHY. Translated from the French, with

Additions, by C. S. HENUY, D.D. 2 vols. 18mo, Muslin. 90 cents.

ROBERTSON'S HISTORY OF THE DISCOVERY OF AMERICA. With Ques-

tions, by J. FROST, A.M. Engravings. 8vo, Sheep extra. $1 75.

ROBERTSON'S HISTORY OF THE EMPEROR CHARLES V. With Questions,

by J. FROST, A.M. Engravings. 8vo, Sheep extra. $1 75.

TREATISE ON DOMESTIC ECONOMY. For the Use of Young Ladies at Home and

at School. By Miss C. E. BEECHER. Revised Edition. 12mo, Muslin, gilt. 75 cents.

PRINCIPLES OF PHYSIOLOGY. By A. COMBE, M.D. With Questions. Engravings.

18mo, half Sheep, 50 cents ; Muslin, 45 cents.

ANIMAL MECHANISM AND PHYSIOLOGY. By J. H. GRISCOM, M.D. Engravings.

18mo, half Sheep, 50 cents ; Muslin, 45 cents.

GLASS'S LIFE OF WASHINGTON, in Latin Prose. Edited by J. N. REYNOLDS. Por-

trait. 12mo, Muslin 1 12$.

HEMPEL'S GRAMMAR OF THE GERMAN LANGUAGE^. Arranged into a new

System on the Principle of Induction. 2 vols. 12mo, half Bound. $1 75.

LEE'S ELEMENTS OF GEOLOGY. Containing a Description of the Geological Forma-

tions and Mineral Resources of the United States. Engravings. 18mo, half Sheep. 50 cents.

KANE'S ELEMENTS OF CHEMISTRY; including the most recent Discoveries and Ap-

plications of the Science to Medicine and Pharmacy, and to the Arts. Edited by JOHN VV. DRA-

PER, M.D. With about 250 Wood-cuts. 8vo, Sheep, $2 25
; Muslin, $2 00.

MAURY'S PRINCIPLES OF ELOQUENCE. With an Introduction, by the Rev. Dr.

POTTER. 18mo, Muslin. 45 cents.

SCH MUCKER'S PSYCHOLOGY ; or, Elements of a new System of Mental Philosophy, on

the basis of Consciousness and Common Sense. Designed for Colleges and Academies. 12mo,

Muslin. 9100.
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